Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{2}u^{-1}\right)^{-3}}{\left(3z^{2}\right)^{-3}}uz^{2}
To raise \frac{x^{2}u^{-1}}{3z^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}u^{-1}\right)^{-3}u}{\left(3z^{2}\right)^{-3}}z^{2}
Express \frac{\left(x^{2}u^{-1}\right)^{-3}}{\left(3z^{2}\right)^{-3}}u as a single fraction.
\frac{\left(x^{2}u^{-1}\right)^{-3}uz^{2}}{\left(3z^{2}\right)^{-3}}
Express \frac{\left(x^{2}u^{-1}\right)^{-3}u}{\left(3z^{2}\right)^{-3}}z^{2} as a single fraction.
\frac{\left(x^{2}\right)^{-3}\left(u^{-1}\right)^{-3}uz^{2}}{\left(3z^{2}\right)^{-3}}
Expand \left(x^{2}u^{-1}\right)^{-3}.
\frac{x^{-6}\left(u^{-1}\right)^{-3}uz^{2}}{\left(3z^{2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{x^{-6}u^{3}uz^{2}}{\left(3z^{2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -1 and -3 to get 3.
\frac{x^{-6}u^{4}z^{2}}{\left(3z^{2}\right)^{-3}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{x^{-6}u^{4}z^{2}}{3^{-3}\left(z^{2}\right)^{-3}}
Expand \left(3z^{2}\right)^{-3}.
\frac{x^{-6}u^{4}z^{2}}{3^{-3}z^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{x^{-6}u^{4}z^{2}}{\frac{1}{27}z^{-6}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{x^{-6}u^{4}z^{8}}{\frac{1}{27}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
x^{-6}u^{4}z^{8}\times 27
Divide x^{-6}u^{4}z^{8} by \frac{1}{27} by multiplying x^{-6}u^{4}z^{8} by the reciprocal of \frac{1}{27}.
\frac{\left(x^{2}u^{-1}\right)^{-3}}{\left(3z^{2}\right)^{-3}}uz^{2}
To raise \frac{x^{2}u^{-1}}{3z^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}u^{-1}\right)^{-3}u}{\left(3z^{2}\right)^{-3}}z^{2}
Express \frac{\left(x^{2}u^{-1}\right)^{-3}}{\left(3z^{2}\right)^{-3}}u as a single fraction.
\frac{\left(x^{2}u^{-1}\right)^{-3}uz^{2}}{\left(3z^{2}\right)^{-3}}
Express \frac{\left(x^{2}u^{-1}\right)^{-3}u}{\left(3z^{2}\right)^{-3}}z^{2} as a single fraction.
\frac{\left(x^{2}\right)^{-3}\left(u^{-1}\right)^{-3}uz^{2}}{\left(3z^{2}\right)^{-3}}
Expand \left(x^{2}u^{-1}\right)^{-3}.
\frac{x^{-6}\left(u^{-1}\right)^{-3}uz^{2}}{\left(3z^{2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{x^{-6}u^{3}uz^{2}}{\left(3z^{2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -1 and -3 to get 3.
\frac{x^{-6}u^{4}z^{2}}{\left(3z^{2}\right)^{-3}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{x^{-6}u^{4}z^{2}}{3^{-3}\left(z^{2}\right)^{-3}}
Expand \left(3z^{2}\right)^{-3}.
\frac{x^{-6}u^{4}z^{2}}{3^{-3}z^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{x^{-6}u^{4}z^{2}}{\frac{1}{27}z^{-6}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{x^{-6}u^{4}z^{8}}{\frac{1}{27}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
x^{-6}u^{4}z^{8}\times 27
Divide x^{-6}u^{4}z^{8} by \frac{1}{27} by multiplying x^{-6}u^{4}z^{8} by the reciprocal of \frac{1}{27}.