Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)^{2}}-\frac{x+y}{x-y}}{\frac{1}{x+y}}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{x^{2}+2xy+y^{2}}.
\frac{\frac{x-y}{x+y}-\frac{x+y}{x-y}}{\frac{1}{x+y}}
Cancel out x+y in both numerator and denominator.
\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+y and x-y is \left(x+y\right)\left(x-y\right). Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}. Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
Since \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
Do the multiplications in \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
Combine like terms in x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Divide \frac{-4xy}{\left(x+y\right)\left(x-y\right)} by \frac{1}{x+y} by multiplying \frac{-4xy}{\left(x+y\right)\left(x-y\right)} by the reciprocal of \frac{1}{x+y}.
\frac{-4xy}{x-y}
Cancel out x+y in both numerator and denominator.
\frac{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)^{2}}-\frac{x+y}{x-y}}{\frac{1}{x+y}}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{x^{2}+2xy+y^{2}}.
\frac{\frac{x-y}{x+y}-\frac{x+y}{x-y}}{\frac{1}{x+y}}
Cancel out x+y in both numerator and denominator.
\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+y and x-y is \left(x+y\right)\left(x-y\right). Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}. Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
Since \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
Do the multiplications in \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{x+y}}
Combine like terms in x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Divide \frac{-4xy}{\left(x+y\right)\left(x-y\right)} by \frac{1}{x+y} by multiplying \frac{-4xy}{\left(x+y\right)\left(x-y\right)} by the reciprocal of \frac{1}{x+y}.
\frac{-4xy}{x-y}
Cancel out x+y in both numerator and denominator.