Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x^{2}-2x+3}{2}-\frac{2x}{2}\right)^{2}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\left(\frac{x^{2}-2x+3-2x}{2}\right)^{2}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
Since \frac{x^{2}-2x+3}{2} and \frac{2x}{2} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x^{2}-4x+3}{2}\right)^{2}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
Combine like terms in x^{2}-2x+3-2x.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
To raise \frac{x^{2}-4x+3}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1}{2}+\frac{2\left(-x^{2}+2x+4\right)}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}+2x+4 times \frac{2}{2}.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1+2\left(-x^{2}+2x+4\right)}{2}\right)^{2}
Since \frac{x^{2}-2x-1}{2} and \frac{2\left(-x^{2}+2x+4\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1-2x^{2}+4x+8}{2}\right)^{2}
Do the multiplications in x^{2}-2x-1+2\left(-x^{2}+2x+4\right).
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{-x^{2}+2x+7}{2}\right)^{2}
Combine like terms in x^{2}-2x-1-2x^{2}+4x+8.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\frac{\left(-x^{2}+2x+7\right)^{2}}{2^{2}}
To raise \frac{-x^{2}+2x+7}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-4x+3\right)^{2}+\left(-x^{2}+2x+7\right)^{2}}{2^{2}}
Since \frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}} and \frac{\left(-x^{2}+2x+7\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}-4x^{3}+3x^{2}-4x^{3}+16x^{2}-12x+3x^{2}-12x+9+x^{4}-2x^{3}-7x^{2}-2x^{3}+4x^{2}+14x-7x^{2}+14x+49}{2^{2}}
Do the multiplications in \left(x^{2}-4x+3\right)^{2}+\left(-x^{2}+2x+7\right)^{2}.
\frac{2x^{4}-12x^{3}+12x^{2}+4x+58}{2^{2}}
Combine like terms in x^{4}-4x^{3}+3x^{2}-4x^{3}+16x^{2}-12x+3x^{2}-12x+9+x^{4}-2x^{3}-7x^{2}-2x^{3}+4x^{2}+14x-7x^{2}+14x+49.
\frac{2\left(x^{4}-6x^{3}+6x^{2}+2x+29\right)}{2^{2}}
Factor the expressions that are not already factored in \frac{2x^{4}-12x^{3}+12x^{2}+4x+58}{2^{2}}.
\frac{x^{4}-6x^{3}+6x^{2}+2x+29}{2}
Cancel out 2 in both numerator and denominator.
\left(\frac{x^{2}-2x+3}{2}-\frac{2x}{2}\right)^{2}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\left(\frac{x^{2}-2x+3-2x}{2}\right)^{2}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
Since \frac{x^{2}-2x+3}{2} and \frac{2x}{2} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x^{2}-4x+3}{2}\right)^{2}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
Combine like terms in x^{2}-2x+3-2x.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1}{2}-x^{2}+2x+4\right)^{2}
To raise \frac{x^{2}-4x+3}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1}{2}+\frac{2\left(-x^{2}+2x+4\right)}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}+2x+4 times \frac{2}{2}.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1+2\left(-x^{2}+2x+4\right)}{2}\right)^{2}
Since \frac{x^{2}-2x-1}{2} and \frac{2\left(-x^{2}+2x+4\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{x^{2}-2x-1-2x^{2}+4x+8}{2}\right)^{2}
Do the multiplications in x^{2}-2x-1+2\left(-x^{2}+2x+4\right).
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\left(\frac{-x^{2}+2x+7}{2}\right)^{2}
Combine like terms in x^{2}-2x-1-2x^{2}+4x+8.
\frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}}+\frac{\left(-x^{2}+2x+7\right)^{2}}{2^{2}}
To raise \frac{-x^{2}+2x+7}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-4x+3\right)^{2}+\left(-x^{2}+2x+7\right)^{2}}{2^{2}}
Since \frac{\left(x^{2}-4x+3\right)^{2}}{2^{2}} and \frac{\left(-x^{2}+2x+7\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}-4x^{3}+3x^{2}-4x^{3}+16x^{2}-12x+3x^{2}-12x+9+x^{4}-2x^{3}-7x^{2}-2x^{3}+4x^{2}+14x-7x^{2}+14x+49}{2^{2}}
Do the multiplications in \left(x^{2}-4x+3\right)^{2}+\left(-x^{2}+2x+7\right)^{2}.
\frac{2x^{4}-12x^{3}+12x^{2}+4x+58}{2^{2}}
Combine like terms in x^{4}-4x^{3}+3x^{2}-4x^{3}+16x^{2}-12x+3x^{2}-12x+9+x^{4}-2x^{3}-7x^{2}-2x^{3}+4x^{2}+14x-7x^{2}+14x+49.
\frac{2\left(x^{4}-6x^{3}+6x^{2}+2x+29\right)}{2^{2}}
Factor the expressions that are not already factored in \frac{2x^{4}-12x^{3}+12x^{2}+4x+58}{2^{2}}.
\frac{x^{4}-6x^{3}+6x^{2}+2x+29}{2}
Cancel out 2 in both numerator and denominator.