Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x+5}{\left(x-5\right)\left(x+5\right)}+\frac{1}{x+5}\right)\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Factor the expressions that are not already factored in \frac{x+5}{x^{2}-25}.
\left(\frac{1}{x-5}+\frac{1}{x+5}\right)\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Cancel out x+5 in both numerator and denominator.
\left(\frac{x+5}{\left(x-5\right)\left(x+5\right)}+\frac{x-5}{\left(x-5\right)\left(x+5\right)}\right)\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x+5 is \left(x-5\right)\left(x+5\right). Multiply \frac{1}{x-5} times \frac{x+5}{x+5}. Multiply \frac{1}{x+5} times \frac{x-5}{x-5}.
\frac{x+5+x-5}{\left(x-5\right)\left(x+5\right)}\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Since \frac{x+5}{\left(x-5\right)\left(x+5\right)} and \frac{x-5}{\left(x-5\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{2x}{\left(x-5\right)\left(x+5\right)}\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Combine like terms in x+5+x-5.
\frac{2x}{\left(x-5\right)\left(x+5\right)}\times \frac{\left(x-5\right)\left(2x-3\right)}{2x\left(2x-3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}-13x+15}{4x^{2}-6x}.
\frac{2x}{\left(x-5\right)\left(x+5\right)}\times \frac{x-5}{2x}
Cancel out 2x-3 in both numerator and denominator.
\frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\times 2x}
Multiply \frac{2x}{\left(x-5\right)\left(x+5\right)} times \frac{x-5}{2x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x+5}
Cancel out 2x\left(x-5\right) in both numerator and denominator.
\left(\frac{x+5}{\left(x-5\right)\left(x+5\right)}+\frac{1}{x+5}\right)\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Factor the expressions that are not already factored in \frac{x+5}{x^{2}-25}.
\left(\frac{1}{x-5}+\frac{1}{x+5}\right)\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Cancel out x+5 in both numerator and denominator.
\left(\frac{x+5}{\left(x-5\right)\left(x+5\right)}+\frac{x-5}{\left(x-5\right)\left(x+5\right)}\right)\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x+5 is \left(x-5\right)\left(x+5\right). Multiply \frac{1}{x-5} times \frac{x+5}{x+5}. Multiply \frac{1}{x+5} times \frac{x-5}{x-5}.
\frac{x+5+x-5}{\left(x-5\right)\left(x+5\right)}\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Since \frac{x+5}{\left(x-5\right)\left(x+5\right)} and \frac{x-5}{\left(x-5\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{2x}{\left(x-5\right)\left(x+5\right)}\times \frac{2x^{2}-13x+15}{4x^{2}-6x}
Combine like terms in x+5+x-5.
\frac{2x}{\left(x-5\right)\left(x+5\right)}\times \frac{\left(x-5\right)\left(2x-3\right)}{2x\left(2x-3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}-13x+15}{4x^{2}-6x}.
\frac{2x}{\left(x-5\right)\left(x+5\right)}\times \frac{x-5}{2x}
Cancel out 2x-3 in both numerator and denominator.
\frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\times 2x}
Multiply \frac{2x}{\left(x-5\right)\left(x+5\right)} times \frac{x-5}{2x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x+5}
Cancel out 2x\left(x-5\right) in both numerator and denominator.