Evaluate
\frac{p^{2}q^{3}}{27}
Expand
\frac{p^{2}q^{3}}{27}
Share
Copied to clipboard
\frac{\left(p^{2}\right)^{3}}{\left(3q\right)^{3}}\times \left(\frac{p^{2}}{q^{3}}\right)^{-2}
To raise \frac{p^{2}}{3q} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(p^{2}\right)^{3}}{\left(3q\right)^{3}}\times \frac{\left(p^{2}\right)^{-2}}{\left(q^{3}\right)^{-2}}
To raise \frac{p^{2}}{q^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(p^{2}\right)^{3}\left(p^{2}\right)^{-2}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
Multiply \frac{\left(p^{2}\right)^{3}}{\left(3q\right)^{3}} times \frac{\left(p^{2}\right)^{-2}}{\left(q^{3}\right)^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{p^{6}\left(p^{2}\right)^{-2}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{p^{6}p^{-4}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{p^{2}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
To multiply powers of the same base, add their exponents. Add 6 and -4 to get 2.
\frac{p^{2}}{\left(3q\right)^{3}q^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{p^{2}}{3^{3}q^{3}q^{-6}}
Expand \left(3q\right)^{3}.
\frac{p^{2}}{27q^{3}q^{-6}}
Calculate 3 to the power of 3 and get 27.
\frac{p^{2}}{27q^{-3}}
To multiply powers of the same base, add their exponents. Add 3 and -6 to get -3.
\frac{\left(p^{2}\right)^{3}}{\left(3q\right)^{3}}\times \left(\frac{p^{2}}{q^{3}}\right)^{-2}
To raise \frac{p^{2}}{3q} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(p^{2}\right)^{3}}{\left(3q\right)^{3}}\times \frac{\left(p^{2}\right)^{-2}}{\left(q^{3}\right)^{-2}}
To raise \frac{p^{2}}{q^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(p^{2}\right)^{3}\left(p^{2}\right)^{-2}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
Multiply \frac{\left(p^{2}\right)^{3}}{\left(3q\right)^{3}} times \frac{\left(p^{2}\right)^{-2}}{\left(q^{3}\right)^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{p^{6}\left(p^{2}\right)^{-2}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{p^{6}p^{-4}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{p^{2}}{\left(3q\right)^{3}\left(q^{3}\right)^{-2}}
To multiply powers of the same base, add their exponents. Add 6 and -4 to get 2.
\frac{p^{2}}{\left(3q\right)^{3}q^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{p^{2}}{3^{3}q^{3}q^{-6}}
Expand \left(3q\right)^{3}.
\frac{p^{2}}{27q^{3}q^{-6}}
Calculate 3 to the power of 3 and get 27.
\frac{p^{2}}{27q^{-3}}
To multiply powers of the same base, add their exponents. Add 3 and -6 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}