Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{m+3}{m}+\frac{m}{-3-m}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Zero divided by any non-zero term gives zero.
\left(\frac{\left(m+3\right)\left(-m-3\right)}{m\left(-m-3\right)}+\frac{mm}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m and -3-m is m\left(-m-3\right). Multiply \frac{m+3}{m} times \frac{-m-3}{-m-3}. Multiply \frac{m}{-3-m} times \frac{m}{m}.
\left(\frac{\left(m+3\right)\left(-m-3\right)+mm}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Since \frac{\left(m+3\right)\left(-m-3\right)}{m\left(-m-3\right)} and \frac{mm}{m\left(-m-3\right)} have the same denominator, add them by adding their numerators.
\left(\frac{-m^{2}-3m-3m-9+m^{2}}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Do the multiplications in \left(m+3\right)\left(-m-3\right)+mm.
\left(\frac{-6m-9}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Combine like terms in -m^{2}-3m-3m-9+m^{2}.
\frac{-6m-9}{m\left(-m-3\right)}\times \frac{m^{2}-9}{m^{5}-27}
Anything plus zero gives itself.
\frac{\left(-6m-9\right)\left(m^{2}-9\right)}{m\left(-m-3\right)\left(m^{5}-27\right)}
Multiply \frac{-6m-9}{m\left(-m-3\right)} times \frac{m^{2}-9}{m^{5}-27} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(m-3\right)\left(-2m-3\right)\left(m+3\right)}{m\left(-m-3\right)\left(m^{5}-27\right)}
Factor the expressions that are not already factored.
\frac{-3\left(m-3\right)\left(-2m-3\right)\left(-m-3\right)}{m\left(-m-3\right)\left(m^{5}-27\right)}
Extract the negative sign in 3+m.
\frac{-3\left(m-3\right)\left(-2m-3\right)}{m\left(m^{5}-27\right)}
Cancel out -m-3 in both numerator and denominator.
\frac{6m^{2}-9m-27}{m^{6}-27m}
Expand the expression.
\left(\frac{m+3}{m}+\frac{m}{-3-m}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Zero divided by any non-zero term gives zero.
\left(\frac{\left(m+3\right)\left(-m-3\right)}{m\left(-m-3\right)}+\frac{mm}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m and -3-m is m\left(-m-3\right). Multiply \frac{m+3}{m} times \frac{-m-3}{-m-3}. Multiply \frac{m}{-3-m} times \frac{m}{m}.
\left(\frac{\left(m+3\right)\left(-m-3\right)+mm}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Since \frac{\left(m+3\right)\left(-m-3\right)}{m\left(-m-3\right)} and \frac{mm}{m\left(-m-3\right)} have the same denominator, add them by adding their numerators.
\left(\frac{-m^{2}-3m-3m-9+m^{2}}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Do the multiplications in \left(m+3\right)\left(-m-3\right)+mm.
\left(\frac{-6m-9}{m\left(-m-3\right)}+0\right)\times \frac{m^{2}-9}{m^{5}-27}
Combine like terms in -m^{2}-3m-3m-9+m^{2}.
\frac{-6m-9}{m\left(-m-3\right)}\times \frac{m^{2}-9}{m^{5}-27}
Anything plus zero gives itself.
\frac{\left(-6m-9\right)\left(m^{2}-9\right)}{m\left(-m-3\right)\left(m^{5}-27\right)}
Multiply \frac{-6m-9}{m\left(-m-3\right)} times \frac{m^{2}-9}{m^{5}-27} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(m-3\right)\left(-2m-3\right)\left(m+3\right)}{m\left(-m-3\right)\left(m^{5}-27\right)}
Factor the expressions that are not already factored.
\frac{-3\left(m-3\right)\left(-2m-3\right)\left(-m-3\right)}{m\left(-m-3\right)\left(m^{5}-27\right)}
Extract the negative sign in 3+m.
\frac{-3\left(m-3\right)\left(-2m-3\right)}{m\left(m^{5}-27\right)}
Cancel out -m-3 in both numerator and denominator.
\frac{6m^{2}-9m-27}{m^{6}-27m}
Expand the expression.