Evaluate
\frac{1}{\left(jk\right)^{4}f^{16}}
Expand
\frac{1}{\left(jk\right)^{4}f^{16}}
Quiz
Algebra
5 problems similar to:
( \frac { k ^ { 3 } f ^ { 4 } } { k ^ { 2 } j ^ { - 1 } } ) ^ { - 4 }
Share
Copied to clipboard
\left(\frac{kf^{4}}{\frac{1}{j}}\right)^{-4}
Cancel out k^{2} in both numerator and denominator.
\left(kf^{4}j\right)^{-4}
Divide kf^{4} by \frac{1}{j} by multiplying kf^{4} by the reciprocal of \frac{1}{j}.
k^{-4}\left(f^{4}\right)^{-4}j^{-4}
Expand \left(kf^{4}j\right)^{-4}.
k^{-4}f^{-16}j^{-4}
To raise a power to another power, multiply the exponents. Multiply 4 and -4 to get -16.
\left(\frac{kf^{4}}{\frac{1}{j}}\right)^{-4}
Cancel out k^{2} in both numerator and denominator.
\left(kf^{4}j\right)^{-4}
Divide kf^{4} by \frac{1}{j} by multiplying kf^{4} by the reciprocal of \frac{1}{j}.
k^{-4}\left(f^{4}\right)^{-4}j^{-4}
Expand \left(kf^{4}j\right)^{-4}.
k^{-4}f^{-16}j^{-4}
To raise a power to another power, multiply the exponents. Multiply 4 and -4 to get -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}