Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i\left(-128+128i\right)}{\left(2-4i\right)^{2}}
Calculate 4+4i to the power of 3 and get -128+128i.
\frac{-128-128i}{\left(2-4i\right)^{2}}
Multiply i and -128+128i to get -128-128i.
\frac{-128-128i}{-12-16i}
Calculate 2-4i to the power of 2 and get -12-16i.
\frac{\left(-128-128i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -12+16i.
\frac{3584-512i}{400}
Do the multiplications in \frac{\left(-128-128i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}.
\frac{224}{25}-\frac{32}{25}i
Divide 3584-512i by 400 to get \frac{224}{25}-\frac{32}{25}i.
Re(\frac{i\left(-128+128i\right)}{\left(2-4i\right)^{2}})
Calculate 4+4i to the power of 3 and get -128+128i.
Re(\frac{-128-128i}{\left(2-4i\right)^{2}})
Multiply i and -128+128i to get -128-128i.
Re(\frac{-128-128i}{-12-16i})
Calculate 2-4i to the power of 2 and get -12-16i.
Re(\frac{\left(-128-128i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)})
Multiply both numerator and denominator of \frac{-128-128i}{-12-16i} by the complex conjugate of the denominator, -12+16i.
Re(\frac{3584-512i}{400})
Do the multiplications in \frac{\left(-128-128i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}.
Re(\frac{224}{25}-\frac{32}{25}i)
Divide 3584-512i by 400 to get \frac{224}{25}-\frac{32}{25}i.
\frac{224}{25}
The real part of \frac{224}{25}-\frac{32}{25}i is \frac{224}{25}.