Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{g}{g-h}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
Factor g^{2}-h^{2}.
\left(\frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of g-h and \left(g+h\right)\left(g-h\right) is \left(g+h\right)\left(g-h\right). Multiply \frac{g}{g-h} times \frac{g+h}{g+h}.
\frac{g\left(g+h\right)-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Since \frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)} and \frac{g^{2}}{\left(g+h\right)\left(g-h\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{g^{2}+gh-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Do the multiplications in g\left(g+h\right)-g^{2}.
\frac{gh}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Combine like terms in g^{2}+gh-g^{2}.
\frac{gh\left(4g+4h\right)}{\left(g+h\right)\left(g-h\right)\times 3g}
Multiply \frac{gh}{\left(g+h\right)\left(g-h\right)} times \frac{4g+4h}{3g} by multiplying numerator times numerator and denominator times denominator.
\frac{h\left(4g+4h\right)}{3\left(g+h\right)\left(g-h\right)}
Cancel out g in both numerator and denominator.
\frac{4h\left(g+h\right)}{3\left(g+h\right)\left(g-h\right)}
Factor the expressions that are not already factored.
\frac{4h}{3\left(g-h\right)}
Cancel out g+h in both numerator and denominator.
\frac{4h}{3g-3h}
Expand the expression.
\left(\frac{g}{g-h}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
Factor g^{2}-h^{2}.
\left(\frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of g-h and \left(g+h\right)\left(g-h\right) is \left(g+h\right)\left(g-h\right). Multiply \frac{g}{g-h} times \frac{g+h}{g+h}.
\frac{g\left(g+h\right)-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Since \frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)} and \frac{g^{2}}{\left(g+h\right)\left(g-h\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{g^{2}+gh-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Do the multiplications in g\left(g+h\right)-g^{2}.
\frac{gh}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Combine like terms in g^{2}+gh-g^{2}.
\frac{gh\left(4g+4h\right)}{\left(g+h\right)\left(g-h\right)\times 3g}
Multiply \frac{gh}{\left(g+h\right)\left(g-h\right)} times \frac{4g+4h}{3g} by multiplying numerator times numerator and denominator times denominator.
\frac{h\left(4g+4h\right)}{3\left(g+h\right)\left(g-h\right)}
Cancel out g in both numerator and denominator.
\frac{4h\left(g+h\right)}{3\left(g+h\right)\left(g-h\right)}
Factor the expressions that are not already factored.
\frac{4h}{3\left(g-h\right)}
Cancel out g+h in both numerator and denominator.
\frac{4h}{3g-3h}
Expand the expression.