Evaluate
\frac{4h}{3\left(g-h\right)}
Expand
-\frac{4h}{3\left(h-g\right)}
Share
Copied to clipboard
\left(\frac{g}{g-h}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
Factor g^{2}-h^{2}.
\left(\frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of g-h and \left(g+h\right)\left(g-h\right) is \left(g+h\right)\left(g-h\right). Multiply \frac{g}{g-h} times \frac{g+h}{g+h}.
\frac{g\left(g+h\right)-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Since \frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)} and \frac{g^{2}}{\left(g+h\right)\left(g-h\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{g^{2}+gh-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Do the multiplications in g\left(g+h\right)-g^{2}.
\frac{gh}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Combine like terms in g^{2}+gh-g^{2}.
\frac{gh\left(4g+4h\right)}{\left(g+h\right)\left(g-h\right)\times 3g}
Multiply \frac{gh}{\left(g+h\right)\left(g-h\right)} times \frac{4g+4h}{3g} by multiplying numerator times numerator and denominator times denominator.
\frac{h\left(4g+4h\right)}{3\left(g+h\right)\left(g-h\right)}
Cancel out g in both numerator and denominator.
\frac{4h\left(g+h\right)}{3\left(g+h\right)\left(g-h\right)}
Factor the expressions that are not already factored.
\frac{4h}{3\left(g-h\right)}
Cancel out g+h in both numerator and denominator.
\frac{4h}{3g-3h}
Expand the expression.
\left(\frac{g}{g-h}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
Factor g^{2}-h^{2}.
\left(\frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)}-\frac{g^{2}}{\left(g+h\right)\left(g-h\right)}\right)\times \frac{4g+4h}{3g}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of g-h and \left(g+h\right)\left(g-h\right) is \left(g+h\right)\left(g-h\right). Multiply \frac{g}{g-h} times \frac{g+h}{g+h}.
\frac{g\left(g+h\right)-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Since \frac{g\left(g+h\right)}{\left(g+h\right)\left(g-h\right)} and \frac{g^{2}}{\left(g+h\right)\left(g-h\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{g^{2}+gh-g^{2}}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Do the multiplications in g\left(g+h\right)-g^{2}.
\frac{gh}{\left(g+h\right)\left(g-h\right)}\times \frac{4g+4h}{3g}
Combine like terms in g^{2}+gh-g^{2}.
\frac{gh\left(4g+4h\right)}{\left(g+h\right)\left(g-h\right)\times 3g}
Multiply \frac{gh}{\left(g+h\right)\left(g-h\right)} times \frac{4g+4h}{3g} by multiplying numerator times numerator and denominator times denominator.
\frac{h\left(4g+4h\right)}{3\left(g+h\right)\left(g-h\right)}
Cancel out g in both numerator and denominator.
\frac{4h\left(g+h\right)}{3\left(g+h\right)\left(g-h\right)}
Factor the expressions that are not already factored.
\frac{4h}{3\left(g-h\right)}
Cancel out g+h in both numerator and denominator.
\frac{4h}{3g-3h}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}