Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{ab}{a-b}+\frac{a\left(a-b\right)}{a-b}\right)\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-b}{a-b}.
\frac{\frac{ab+a\left(a-b\right)}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a-b} and \frac{a\left(a-b\right)}{a-b} have the same denominator, add them by adding their numerators.
\frac{\frac{ab+a^{2}-ab}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab+a\left(a-b\right).
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab+a^{2}-ab.
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-\frac{a\left(a+b\right)}{a+b}\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a\left(a+b\right)}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a+b} and \frac{a\left(a+b\right)}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a^{2}-ab}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab-a\left(a+b\right).
\frac{\frac{a^{2}}{a-b}\times \frac{-a^{2}}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab-a^{2}-ab.
\frac{\frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Multiply \frac{a^{2}}{a-b} times \frac{-a^{2}}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(-1\right)a^{2}\left(b^{2}-a^{2}\right)}{\left(a-b\right)\left(a+b\right)a^{2}b^{2}}
Divide \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by \frac{a^{2}b^{2}}{b^{2}-a^{2}} by multiplying \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by the reciprocal of \frac{a^{2}b^{2}}{b^{2}-a^{2}}.
\frac{-a^{2}\left(-a^{2}+b^{2}\right)}{\left(a+b\right)\left(a-b\right)b^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{-\left(a-b\right)\left(-a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(a+b\right)\left(a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Extract the negative sign in -a-b.
\frac{-\left(-1\right)a^{2}}{b^{2}}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{a^{2}}{b^{2}}
Expand the expression.
\frac{\left(\frac{ab}{a-b}+\frac{a\left(a-b\right)}{a-b}\right)\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-b}{a-b}.
\frac{\frac{ab+a\left(a-b\right)}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a-b} and \frac{a\left(a-b\right)}{a-b} have the same denominator, add them by adding their numerators.
\frac{\frac{ab+a^{2}-ab}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab+a\left(a-b\right).
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab+a^{2}-ab.
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-\frac{a\left(a+b\right)}{a+b}\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a\left(a+b\right)}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a+b} and \frac{a\left(a+b\right)}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a^{2}-ab}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab-a\left(a+b\right).
\frac{\frac{a^{2}}{a-b}\times \frac{-a^{2}}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab-a^{2}-ab.
\frac{\frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Multiply \frac{a^{2}}{a-b} times \frac{-a^{2}}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(-1\right)a^{2}\left(b^{2}-a^{2}\right)}{\left(a-b\right)\left(a+b\right)a^{2}b^{2}}
Divide \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by \frac{a^{2}b^{2}}{b^{2}-a^{2}} by multiplying \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by the reciprocal of \frac{a^{2}b^{2}}{b^{2}-a^{2}}.
\frac{-a^{2}\left(-a^{2}+b^{2}\right)}{\left(a+b\right)\left(a-b\right)b^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{-\left(a-b\right)\left(-a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(a+b\right)\left(a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Extract the negative sign in -a-b.
\frac{-\left(-1\right)a^{2}}{b^{2}}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{a^{2}}{b^{2}}
Expand the expression.