Evaluate
\left(\frac{a}{b}\right)^{2}
Expand
\left(\frac{a}{b}\right)^{2}
Share
Copied to clipboard
\frac{\left(\frac{ab}{a-b}+\frac{a\left(a-b\right)}{a-b}\right)\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-b}{a-b}.
\frac{\frac{ab+a\left(a-b\right)}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a-b} and \frac{a\left(a-b\right)}{a-b} have the same denominator, add them by adding their numerators.
\frac{\frac{ab+a^{2}-ab}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab+a\left(a-b\right).
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab+a^{2}-ab.
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-\frac{a\left(a+b\right)}{a+b}\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a\left(a+b\right)}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a+b} and \frac{a\left(a+b\right)}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a^{2}-ab}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab-a\left(a+b\right).
\frac{\frac{a^{2}}{a-b}\times \frac{-a^{2}}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab-a^{2}-ab.
\frac{\frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Multiply \frac{a^{2}}{a-b} times \frac{-a^{2}}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(-1\right)a^{2}\left(b^{2}-a^{2}\right)}{\left(a-b\right)\left(a+b\right)a^{2}b^{2}}
Divide \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by \frac{a^{2}b^{2}}{b^{2}-a^{2}} by multiplying \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by the reciprocal of \frac{a^{2}b^{2}}{b^{2}-a^{2}}.
\frac{-a^{2}\left(-a^{2}+b^{2}\right)}{\left(a+b\right)\left(a-b\right)b^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{-\left(a-b\right)\left(-a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(a+b\right)\left(a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Extract the negative sign in -a-b.
\frac{-\left(-1\right)a^{2}}{b^{2}}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{a^{2}}{b^{2}}
Expand the expression.
\frac{\left(\frac{ab}{a-b}+\frac{a\left(a-b\right)}{a-b}\right)\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-b}{a-b}.
\frac{\frac{ab+a\left(a-b\right)}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a-b} and \frac{a\left(a-b\right)}{a-b} have the same denominator, add them by adding their numerators.
\frac{\frac{ab+a^{2}-ab}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab+a\left(a-b\right).
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-a\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab+a^{2}-ab.
\frac{\frac{a^{2}}{a-b}\left(\frac{ab}{a+b}-\frac{a\left(a+b\right)}{a+b}\right)}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a\left(a+b\right)}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Since \frac{ab}{a+b} and \frac{a\left(a+b\right)}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}}{a-b}\times \frac{ab-a^{2}-ab}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Do the multiplications in ab-a\left(a+b\right).
\frac{\frac{a^{2}}{a-b}\times \frac{-a^{2}}{a+b}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Combine like terms in ab-a^{2}-ab.
\frac{\frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)}}{\frac{a^{2}b^{2}}{b^{2}-a^{2}}}
Multiply \frac{a^{2}}{a-b} times \frac{-a^{2}}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(-1\right)a^{2}\left(b^{2}-a^{2}\right)}{\left(a-b\right)\left(a+b\right)a^{2}b^{2}}
Divide \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by \frac{a^{2}b^{2}}{b^{2}-a^{2}} by multiplying \frac{a^{2}\left(-1\right)a^{2}}{\left(a-b\right)\left(a+b\right)} by the reciprocal of \frac{a^{2}b^{2}}{b^{2}-a^{2}}.
\frac{-a^{2}\left(-a^{2}+b^{2}\right)}{\left(a+b\right)\left(a-b\right)b^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{-\left(a-b\right)\left(-a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(a+b\right)\left(a-b\right)a^{2}}{\left(a+b\right)\left(a-b\right)b^{2}}
Extract the negative sign in -a-b.
\frac{-\left(-1\right)a^{2}}{b^{2}}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{a^{2}}{b^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}