Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a}{a-2b}+\frac{8b^{2}}{\left(a-2b\right)\left(a+2b\right)}+\frac{2b}{a+2b}}{\frac{a+2b}{4b-2a}}
Factor a^{2}-4b^{2}.
\frac{\frac{a\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}+\frac{8b^{2}}{\left(a-2b\right)\left(a+2b\right)}+\frac{2b}{a+2b}}{\frac{a+2b}{4b-2a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2b and \left(a-2b\right)\left(a+2b\right) is \left(a-2b\right)\left(a+2b\right). Multiply \frac{a}{a-2b} times \frac{a+2b}{a+2b}.
\frac{\frac{a\left(a+2b\right)+8b^{2}}{\left(a-2b\right)\left(a+2b\right)}+\frac{2b}{a+2b}}{\frac{a+2b}{4b-2a}}
Since \frac{a\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)} and \frac{8b^{2}}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+2ab+8b^{2}}{\left(a-2b\right)\left(a+2b\right)}+\frac{2b}{a+2b}}{\frac{a+2b}{4b-2a}}
Do the multiplications in a\left(a+2b\right)+8b^{2}.
\frac{\frac{a^{2}+2ab+8b^{2}}{\left(a-2b\right)\left(a+2b\right)}+\frac{2b\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}}{\frac{a+2b}{4b-2a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2b\right)\left(a+2b\right) and a+2b is \left(a-2b\right)\left(a+2b\right). Multiply \frac{2b}{a+2b} times \frac{a-2b}{a-2b}.
\frac{\frac{a^{2}+2ab+8b^{2}+2b\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}}{\frac{a+2b}{4b-2a}}
Since \frac{a^{2}+2ab+8b^{2}}{\left(a-2b\right)\left(a+2b\right)} and \frac{2b\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+2ab+8b^{2}+2ab-4b^{2}}{\left(a-2b\right)\left(a+2b\right)}}{\frac{a+2b}{4b-2a}}
Do the multiplications in a^{2}+2ab+8b^{2}+2b\left(a-2b\right).
\frac{\frac{a^{2}+4b^{2}+4ab}{\left(a-2b\right)\left(a+2b\right)}}{\frac{a+2b}{4b-2a}}
Combine like terms in a^{2}+2ab+8b^{2}+2ab-4b^{2}.
\frac{\frac{\left(a+2b\right)^{2}}{\left(a-2b\right)\left(a+2b\right)}}{\frac{a+2b}{4b-2a}}
Factor the expressions that are not already factored in \frac{a^{2}+4b^{2}+4ab}{\left(a-2b\right)\left(a+2b\right)}.
\frac{\frac{a+2b}{a-2b}}{\frac{a+2b}{4b-2a}}
Cancel out a+2b in both numerator and denominator.
\frac{\left(a+2b\right)\left(4b-2a\right)}{\left(a-2b\right)\left(a+2b\right)}
Divide \frac{a+2b}{a-2b} by \frac{a+2b}{4b-2a} by multiplying \frac{a+2b}{a-2b} by the reciprocal of \frac{a+2b}{4b-2a}.
\frac{-2a+4b}{a-2b}
Cancel out a+2b in both numerator and denominator.
\frac{2\left(-a+2b\right)}{a-2b}
Factor the expressions that are not already factored.
\frac{-2\left(a-2b\right)}{a-2b}
Extract the negative sign in 2b-a.
-2
Cancel out a-2b in both numerator and denominator.