Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a}{\left(a-2\right)\left(a+2\right)}-\frac{8}{a\left(a+2\right)}\right)\times \frac{a^{2}-2a}{4-a}
Factor a^{2}-4. Factor a^{2}+2a.
\left(\frac{aa}{a\left(a-2\right)\left(a+2\right)}-\frac{8\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}\right)\times \frac{a^{2}-2a}{4-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and a\left(a+2\right) is a\left(a-2\right)\left(a+2\right). Multiply \frac{a}{\left(a-2\right)\left(a+2\right)} times \frac{a}{a}. Multiply \frac{8}{a\left(a+2\right)} times \frac{a-2}{a-2}.
\frac{aa-8\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}\times \frac{a^{2}-2a}{4-a}
Since \frac{aa}{a\left(a-2\right)\left(a+2\right)} and \frac{8\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-8a+16}{a\left(a-2\right)\left(a+2\right)}\times \frac{a^{2}-2a}{4-a}
Do the multiplications in aa-8\left(a-2\right).
\frac{\left(a^{2}-8a+16\right)\left(a^{2}-2a\right)}{a\left(a-2\right)\left(a+2\right)\left(4-a\right)}
Multiply \frac{a^{2}-8a+16}{a\left(a-2\right)\left(a+2\right)} times \frac{a^{2}-2a}{4-a} by multiplying numerator times numerator and denominator times denominator.
\frac{a\left(a-2\right)\left(a-4\right)^{2}}{a\left(a-2\right)\left(a+2\right)\left(-a+4\right)}
Factor the expressions that are not already factored.
\frac{\left(a-4\right)^{2}}{\left(a+2\right)\left(-a+4\right)}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{a^{2}-8a+16}{-a^{2}+2a+8}
Expand the expression.
\frac{\left(a-4\right)^{2}}{\left(a-4\right)\left(-a-2\right)}
Factor the expressions that are not already factored.
\frac{a-4}{-a-2}
Cancel out a-4 in both numerator and denominator.
\left(\frac{a}{\left(a-2\right)\left(a+2\right)}-\frac{8}{a\left(a+2\right)}\right)\times \frac{a^{2}-2a}{4-a}
Factor a^{2}-4. Factor a^{2}+2a.
\left(\frac{aa}{a\left(a-2\right)\left(a+2\right)}-\frac{8\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}\right)\times \frac{a^{2}-2a}{4-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and a\left(a+2\right) is a\left(a-2\right)\left(a+2\right). Multiply \frac{a}{\left(a-2\right)\left(a+2\right)} times \frac{a}{a}. Multiply \frac{8}{a\left(a+2\right)} times \frac{a-2}{a-2}.
\frac{aa-8\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}\times \frac{a^{2}-2a}{4-a}
Since \frac{aa}{a\left(a-2\right)\left(a+2\right)} and \frac{8\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-8a+16}{a\left(a-2\right)\left(a+2\right)}\times \frac{a^{2}-2a}{4-a}
Do the multiplications in aa-8\left(a-2\right).
\frac{\left(a^{2}-8a+16\right)\left(a^{2}-2a\right)}{a\left(a-2\right)\left(a+2\right)\left(4-a\right)}
Multiply \frac{a^{2}-8a+16}{a\left(a-2\right)\left(a+2\right)} times \frac{a^{2}-2a}{4-a} by multiplying numerator times numerator and denominator times denominator.
\frac{a\left(a-2\right)\left(a-4\right)^{2}}{a\left(a-2\right)\left(a+2\right)\left(-a+4\right)}
Factor the expressions that are not already factored.
\frac{\left(a-4\right)^{2}}{\left(a+2\right)\left(-a+4\right)}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{a^{2}-8a+16}{-a^{2}+2a+8}
Expand the expression.
\frac{\left(a-4\right)^{2}}{\left(a-4\right)\left(-a-2\right)}
Factor the expressions that are not already factored.
\frac{a-4}{-a-2}
Cancel out a-4 in both numerator and denominator.