Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a}{a+1}-\frac{a+3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Factor a^{2}-1.
\frac{\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a+3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{\frac{a\left(a-1\right)-\left(a+3\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Since \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a+3}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-a-a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Do the multiplications in a\left(a-1\right)-\left(a+3\right).
\frac{\frac{a^{2}-2a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Combine like terms in a^{2}-a-a-3.
\frac{\frac{\left(a-3\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-2a-3}{\left(a-1\right)\left(a+1\right)}.
\frac{\frac{a-3}{a-1}}{\frac{a^{2}-3a}{a}}
Cancel out a+1 in both numerator and denominator.
\frac{\frac{a-3}{a-1}}{\frac{a\left(a-3\right)}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-3a}{a}.
\frac{\frac{a-3}{a-1}}{a-3}
Cancel out a in both numerator and denominator.
\frac{a-3}{\left(a-1\right)\left(a-3\right)}
Express \frac{\frac{a-3}{a-1}}{a-3} as a single fraction.
\frac{1}{a-1}
Cancel out a-3 in both numerator and denominator.
\frac{\frac{a}{a+1}-\frac{a+3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Factor a^{2}-1.
\frac{\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a+3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{\frac{a\left(a-1\right)-\left(a+3\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Since \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a+3}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-a-a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Do the multiplications in a\left(a-1\right)-\left(a+3\right).
\frac{\frac{a^{2}-2a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Combine like terms in a^{2}-a-a-3.
\frac{\frac{\left(a-3\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{a^{2}-3a}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-2a-3}{\left(a-1\right)\left(a+1\right)}.
\frac{\frac{a-3}{a-1}}{\frac{a^{2}-3a}{a}}
Cancel out a+1 in both numerator and denominator.
\frac{\frac{a-3}{a-1}}{\frac{a\left(a-3\right)}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-3a}{a}.
\frac{\frac{a-3}{a-1}}{a-3}
Cancel out a in both numerator and denominator.
\frac{a-3}{\left(a-1\right)\left(a-3\right)}
Express \frac{\frac{a-3}{a-1}}{a-3} as a single fraction.
\frac{1}{a-1}
Cancel out a-3 in both numerator and denominator.