Evaluate
-\frac{6}{a}
Expand
-\frac{6}{a}
Share
Copied to clipboard
\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{1}{a}}{\frac{b}{3b-a}}
Factor a^{2}-3ab.
\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{a-3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3b\right) and a is a\left(a-3b\right). Multiply \frac{1}{a} times \frac{a-3b}{a-3b}.
\frac{\frac{a+3b-\left(a-3b\right)}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Since \frac{a+3b}{a\left(a-3b\right)} and \frac{a-3b}{a\left(a-3b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3b-a+3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Do the multiplications in a+3b-\left(a-3b\right).
\frac{\frac{6b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Combine like terms in a+3b-a+3b.
\frac{6b\left(3b-a\right)}{a\left(a-3b\right)b}
Divide \frac{6b}{a\left(a-3b\right)} by \frac{b}{3b-a} by multiplying \frac{6b}{a\left(a-3b\right)} by the reciprocal of \frac{b}{3b-a}.
\frac{-6b\left(a-3b\right)}{ab\left(a-3b\right)}
Extract the negative sign in 3b-a.
\frac{-6}{a}
Cancel out b\left(a-3b\right) in both numerator and denominator.
\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{1}{a}}{\frac{b}{3b-a}}
Factor a^{2}-3ab.
\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{a-3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3b\right) and a is a\left(a-3b\right). Multiply \frac{1}{a} times \frac{a-3b}{a-3b}.
\frac{\frac{a+3b-\left(a-3b\right)}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Since \frac{a+3b}{a\left(a-3b\right)} and \frac{a-3b}{a\left(a-3b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3b-a+3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Do the multiplications in a+3b-\left(a-3b\right).
\frac{\frac{6b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Combine like terms in a+3b-a+3b.
\frac{6b\left(3b-a\right)}{a\left(a-3b\right)b}
Divide \frac{6b}{a\left(a-3b\right)} by \frac{b}{3b-a} by multiplying \frac{6b}{a\left(a-3b\right)} by the reciprocal of \frac{b}{3b-a}.
\frac{-6b\left(a-3b\right)}{ab\left(a-3b\right)}
Extract the negative sign in 3b-a.
\frac{-6}{a}
Cancel out b\left(a-3b\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}