Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{1}{a}}{\frac{b}{3b-a}}
Factor a^{2}-3ab.
\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{a-3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3b\right) and a is a\left(a-3b\right). Multiply \frac{1}{a} times \frac{a-3b}{a-3b}.
\frac{\frac{a+3b-\left(a-3b\right)}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Since \frac{a+3b}{a\left(a-3b\right)} and \frac{a-3b}{a\left(a-3b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3b-a+3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Do the multiplications in a+3b-\left(a-3b\right).
\frac{\frac{6b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Combine like terms in a+3b-a+3b.
\frac{6b\left(3b-a\right)}{a\left(a-3b\right)b}
Divide \frac{6b}{a\left(a-3b\right)} by \frac{b}{3b-a} by multiplying \frac{6b}{a\left(a-3b\right)} by the reciprocal of \frac{b}{3b-a}.
\frac{-6b\left(a-3b\right)}{ab\left(a-3b\right)}
Extract the negative sign in 3b-a.
\frac{-6}{a}
Cancel out b\left(a-3b\right) in both numerator and denominator.
\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{1}{a}}{\frac{b}{3b-a}}
Factor a^{2}-3ab.
\frac{\frac{a+3b}{a\left(a-3b\right)}-\frac{a-3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3b\right) and a is a\left(a-3b\right). Multiply \frac{1}{a} times \frac{a-3b}{a-3b}.
\frac{\frac{a+3b-\left(a-3b\right)}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Since \frac{a+3b}{a\left(a-3b\right)} and \frac{a-3b}{a\left(a-3b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3b-a+3b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Do the multiplications in a+3b-\left(a-3b\right).
\frac{\frac{6b}{a\left(a-3b\right)}}{\frac{b}{3b-a}}
Combine like terms in a+3b-a+3b.
\frac{6b\left(3b-a\right)}{a\left(a-3b\right)b}
Divide \frac{6b}{a\left(a-3b\right)} by \frac{b}{3b-a} by multiplying \frac{6b}{a\left(a-3b\right)} by the reciprocal of \frac{b}{3b-a}.
\frac{-6b\left(a-3b\right)}{ab\left(a-3b\right)}
Extract the negative sign in 3b-a.
\frac{-6}{a}
Cancel out b\left(a-3b\right) in both numerator and denominator.