( \frac { 9 } { x } - 2 = \frac { 2 } { x - 1 } )
Solve for x
x=3
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\left(x-1\right)\times 9+x\left(x-1\right)\left(-2\right)=x\times 2
Variable x cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by x\left(x-1\right), the least common multiple of x,x-1.
9x-9+x\left(x-1\right)\left(-2\right)=x\times 2
Use the distributive property to multiply x-1 by 9.
9x-9+\left(x^{2}-x\right)\left(-2\right)=x\times 2
Use the distributive property to multiply x by x-1.
9x-9-2x^{2}+2x=x\times 2
Use the distributive property to multiply x^{2}-x by -2.
11x-9-2x^{2}=x\times 2
Combine 9x and 2x to get 11x.
11x-9-2x^{2}-x\times 2=0
Subtract x\times 2 from both sides.
9x-9-2x^{2}=0
Combine 11x and -x\times 2 to get 9x.
-2x^{2}+9x-9=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=9 ab=-2\left(-9\right)=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=6 b=3
The solution is the pair that gives sum 9.
\left(-2x^{2}+6x\right)+\left(3x-9\right)
Rewrite -2x^{2}+9x-9 as \left(-2x^{2}+6x\right)+\left(3x-9\right).
2x\left(-x+3\right)-3\left(-x+3\right)
Factor out 2x in the first and -3 in the second group.
\left(-x+3\right)\left(2x-3\right)
Factor out common term -x+3 by using distributive property.
x=3 x=\frac{3}{2}
To find equation solutions, solve -x+3=0 and 2x-3=0.
\left(x-1\right)\times 9+x\left(x-1\right)\left(-2\right)=x\times 2
Variable x cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by x\left(x-1\right), the least common multiple of x,x-1.
9x-9+x\left(x-1\right)\left(-2\right)=x\times 2
Use the distributive property to multiply x-1 by 9.
9x-9+\left(x^{2}-x\right)\left(-2\right)=x\times 2
Use the distributive property to multiply x by x-1.
9x-9-2x^{2}+2x=x\times 2
Use the distributive property to multiply x^{2}-x by -2.
11x-9-2x^{2}=x\times 2
Combine 9x and 2x to get 11x.
11x-9-2x^{2}-x\times 2=0
Subtract x\times 2 from both sides.
9x-9-2x^{2}=0
Combine 11x and -x\times 2 to get 9x.
-2x^{2}+9x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 9 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
Square 9.
x=\frac{-9±\sqrt{81+8\left(-9\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-9±\sqrt{81-72}}{2\left(-2\right)}
Multiply 8 times -9.
x=\frac{-9±\sqrt{9}}{2\left(-2\right)}
Add 81 to -72.
x=\frac{-9±3}{2\left(-2\right)}
Take the square root of 9.
x=\frac{-9±3}{-4}
Multiply 2 times -2.
x=-\frac{6}{-4}
Now solve the equation x=\frac{-9±3}{-4} when ± is plus. Add -9 to 3.
x=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{-4}
Now solve the equation x=\frac{-9±3}{-4} when ± is minus. Subtract 3 from -9.
x=3
Divide -12 by -4.
x=\frac{3}{2} x=3
The equation is now solved.
\left(x-1\right)\times 9+x\left(x-1\right)\left(-2\right)=x\times 2
Variable x cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by x\left(x-1\right), the least common multiple of x,x-1.
9x-9+x\left(x-1\right)\left(-2\right)=x\times 2
Use the distributive property to multiply x-1 by 9.
9x-9+\left(x^{2}-x\right)\left(-2\right)=x\times 2
Use the distributive property to multiply x by x-1.
9x-9-2x^{2}+2x=x\times 2
Use the distributive property to multiply x^{2}-x by -2.
11x-9-2x^{2}=x\times 2
Combine 9x and 2x to get 11x.
11x-9-2x^{2}-x\times 2=0
Subtract x\times 2 from both sides.
9x-9-2x^{2}=0
Combine 11x and -x\times 2 to get 9x.
9x-2x^{2}=9
Add 9 to both sides. Anything plus zero gives itself.
-2x^{2}+9x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+9x}{-2}=\frac{9}{-2}
Divide both sides by -2.
x^{2}+\frac{9}{-2}x=\frac{9}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{9}{2}x=\frac{9}{-2}
Divide 9 by -2.
x^{2}-\frac{9}{2}x=-\frac{9}{2}
Divide 9 by -2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{9}{2}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{9}{2}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{9}{16}
Add -\frac{9}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{3}{4} x-\frac{9}{4}=-\frac{3}{4}
Simplify.
x=3 x=\frac{3}{2}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}