Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{9}{16}\times \frac{1}{3}+\frac{9}{16}\times \frac{-3}{9}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{9\times 1}{16\times 3}+\frac{9}{16}\times \frac{-3}{9}
Multiply \frac{9}{16} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{48}+\frac{9}{16}\times \frac{-3}{9}
Do the multiplications in the fraction \frac{9\times 1}{16\times 3}.
\frac{3}{16}+\frac{9}{16}\times \frac{-3}{9}
Reduce the fraction \frac{9}{48} to lowest terms by extracting and canceling out 3.
\frac{3}{16}+\frac{9}{16}\left(-\frac{1}{3}\right)
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
\frac{3}{16}+\frac{9\left(-1\right)}{16\times 3}
Multiply \frac{9}{16} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{16}+\frac{-9}{48}
Do the multiplications in the fraction \frac{9\left(-1\right)}{16\times 3}.
\frac{3}{16}-\frac{3}{16}
Reduce the fraction \frac{-9}{48} to lowest terms by extracting and canceling out 3.
0
Subtract \frac{3}{16} from \frac{3}{16} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}