Evaluate
\frac{9\sqrt{5}}{4}+\frac{101}{16}\approx 11.343652949
Expand
\frac{9 \sqrt{5}}{4} + \frac{101}{16} = 11.343652949
Share
Copied to clipboard
\frac{\left(9+2\sqrt{5}\right)^{2}}{4^{2}}
To raise \frac{9+2\sqrt{5}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{81+36\sqrt{5}+4\left(\sqrt{5}\right)^{2}}{4^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9+2\sqrt{5}\right)^{2}.
\frac{81+36\sqrt{5}+4\times 5}{4^{2}}
The square of \sqrt{5} is 5.
\frac{81+36\sqrt{5}+20}{4^{2}}
Multiply 4 and 5 to get 20.
\frac{101+36\sqrt{5}}{4^{2}}
Add 81 and 20 to get 101.
\frac{101+36\sqrt{5}}{16}
Calculate 4 to the power of 2 and get 16.
\frac{\left(9+2\sqrt{5}\right)^{2}}{4^{2}}
To raise \frac{9+2\sqrt{5}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{81+36\sqrt{5}+4\left(\sqrt{5}\right)^{2}}{4^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9+2\sqrt{5}\right)^{2}.
\frac{81+36\sqrt{5}+4\times 5}{4^{2}}
The square of \sqrt{5} is 5.
\frac{81+36\sqrt{5}+20}{4^{2}}
Multiply 4 and 5 to get 20.
\frac{101+36\sqrt{5}}{4^{2}}
Add 81 and 20 to get 101.
\frac{101+36\sqrt{5}}{16}
Calculate 4 to the power of 2 and get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}