Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{8}{y^{6}}\right)^{-\frac{1}{3}}
Use the rules of exponents to simplify the expression.
\frac{8^{-\frac{1}{3}}}{\left(y^{6}\right)^{-\frac{1}{3}}}
To raise the quotient of two numbers to a power, raise each number to the power and then divide.
\frac{\frac{1}{2}}{y^{6\left(-\frac{1}{3}\right)}}
To raise a power to another power, multiply the exponents.
\frac{\frac{1}{2}y^{2}}{1}
Multiply 6 times -\frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{8^{-\frac{1}{3}}}{\left(y^{6}\right)^{-\frac{1}{3}}})
To raise \frac{8}{y^{6}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{8^{-\frac{1}{3}}}{y^{-2}})
To raise a power to another power, multiply the exponents. Multiply 6 and -\frac{1}{3} to get -2.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{2}}{y^{-2}})
Calculate 8 to the power of -\frac{1}{3} and get \frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{2y^{-2}})
Express \frac{\frac{1}{2}}{y^{-2}} as a single fraction.
-\left(2y^{-2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(2y^{-2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(2y^{-2}\right)^{-2}\left(-2\right)\times 2y^{-2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
4y^{-3}\times \left(2y^{-2}\right)^{-2}
Simplify.