( \frac { 8 } { 3 } + \frac { 5 } { 4 } - \frac { 3 } { 2 } + \frac { 7 } { 8 }
Evaluate
\frac{79}{24}\approx 3.291666667
Factor
\frac{79}{2 ^ {3} \cdot 3} = 3\frac{7}{24} = 3.2916666666666665
Share
Copied to clipboard
\frac{32}{12}+\frac{15}{12}-\frac{3}{2}+\frac{7}{8}
Least common multiple of 3 and 4 is 12. Convert \frac{8}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{32+15}{12}-\frac{3}{2}+\frac{7}{8}
Since \frac{32}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{47}{12}-\frac{3}{2}+\frac{7}{8}
Add 32 and 15 to get 47.
\frac{47}{12}-\frac{18}{12}+\frac{7}{8}
Least common multiple of 12 and 2 is 12. Convert \frac{47}{12} and \frac{3}{2} to fractions with denominator 12.
\frac{47-18}{12}+\frac{7}{8}
Since \frac{47}{12} and \frac{18}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{29}{12}+\frac{7}{8}
Subtract 18 from 47 to get 29.
\frac{58}{24}+\frac{21}{24}
Least common multiple of 12 and 8 is 24. Convert \frac{29}{12} and \frac{7}{8} to fractions with denominator 24.
\frac{58+21}{24}
Since \frac{58}{24} and \frac{21}{24} have the same denominator, add them by adding their numerators.
\frac{79}{24}
Add 58 and 21 to get 79.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}