Solve for x
x=8
Graph
Share
Copied to clipboard
75\left(\left(\frac{8}{15}\right)^{3}-\left(\frac{1}{3}\right)^{3}\right)-75\times \left(\frac{1}{5}\right)^{3}=x
Multiply both sides of the equation by 75.
75\left(\frac{512}{3375}-\left(\frac{1}{3}\right)^{3}\right)-75\times \left(\frac{1}{5}\right)^{3}=x
Calculate \frac{8}{15} to the power of 3 and get \frac{512}{3375}.
75\left(\frac{512}{3375}-\frac{1}{27}\right)-75\times \left(\frac{1}{5}\right)^{3}=x
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
75\left(\frac{512}{3375}-\frac{125}{3375}\right)-75\times \left(\frac{1}{5}\right)^{3}=x
Least common multiple of 3375 and 27 is 3375. Convert \frac{512}{3375} and \frac{1}{27} to fractions with denominator 3375.
75\times \frac{512-125}{3375}-75\times \left(\frac{1}{5}\right)^{3}=x
Since \frac{512}{3375} and \frac{125}{3375} have the same denominator, subtract them by subtracting their numerators.
75\times \frac{387}{3375}-75\times \left(\frac{1}{5}\right)^{3}=x
Subtract 125 from 512 to get 387.
75\times \frac{43}{375}-75\times \left(\frac{1}{5}\right)^{3}=x
Reduce the fraction \frac{387}{3375} to lowest terms by extracting and canceling out 9.
\frac{75\times 43}{375}-75\times \left(\frac{1}{5}\right)^{3}=x
Express 75\times \frac{43}{375} as a single fraction.
\frac{3225}{375}-75\times \left(\frac{1}{5}\right)^{3}=x
Multiply 75 and 43 to get 3225.
\frac{43}{5}-75\times \left(\frac{1}{5}\right)^{3}=x
Reduce the fraction \frac{3225}{375} to lowest terms by extracting and canceling out 75.
\frac{43}{5}-75\times \frac{1}{125}=x
Calculate \frac{1}{5} to the power of 3 and get \frac{1}{125}.
\frac{43}{5}-\frac{75}{125}=x
Multiply 75 and \frac{1}{125} to get \frac{75}{125}.
\frac{43}{5}-\frac{3}{5}=x
Reduce the fraction \frac{75}{125} to lowest terms by extracting and canceling out 25.
\frac{43-3}{5}=x
Since \frac{43}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{40}{5}=x
Subtract 3 from 43 to get 40.
8=x
Divide 40 by 5 to get 8.
x=8
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}