Evaluate
\frac{2089}{232}\approx 9.004310345
Factor
\frac{2089}{2 ^ {3} \cdot 29} = 9\frac{1}{232} = 9.004310344827585
Share
Copied to clipboard
\frac{\left(8\times 2+1\right)\times 3}{2\left(9\times 3+2\right)}+\frac{\frac{16\times 4+1}{4}}{2}
Divide \frac{8\times 2+1}{2} by \frac{9\times 3+2}{3} by multiplying \frac{8\times 2+1}{2} by the reciprocal of \frac{9\times 3+2}{3}.
\frac{\left(16+1\right)\times 3}{2\left(9\times 3+2\right)}+\frac{\frac{16\times 4+1}{4}}{2}
Multiply 8 and 2 to get 16.
\frac{17\times 3}{2\left(9\times 3+2\right)}+\frac{\frac{16\times 4+1}{4}}{2}
Add 16 and 1 to get 17.
\frac{51}{2\left(9\times 3+2\right)}+\frac{\frac{16\times 4+1}{4}}{2}
Multiply 17 and 3 to get 51.
\frac{51}{2\left(27+2\right)}+\frac{\frac{16\times 4+1}{4}}{2}
Multiply 9 and 3 to get 27.
\frac{51}{2\times 29}+\frac{\frac{16\times 4+1}{4}}{2}
Add 27 and 2 to get 29.
\frac{51}{58}+\frac{\frac{16\times 4+1}{4}}{2}
Multiply 2 and 29 to get 58.
\frac{51}{58}+\frac{16\times 4+1}{4\times 2}
Express \frac{\frac{16\times 4+1}{4}}{2} as a single fraction.
\frac{51}{58}+\frac{64+1}{4\times 2}
Multiply 16 and 4 to get 64.
\frac{51}{58}+\frac{65}{4\times 2}
Add 64 and 1 to get 65.
\frac{51}{58}+\frac{65}{8}
Multiply 4 and 2 to get 8.
\frac{204}{232}+\frac{1885}{232}
Least common multiple of 58 and 8 is 232. Convert \frac{51}{58} and \frac{65}{8} to fractions with denominator 232.
\frac{204+1885}{232}
Since \frac{204}{232} and \frac{1885}{232} have the same denominator, add them by adding their numerators.
\frac{2089}{232}
Add 204 and 1885 to get 2089.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}