Solve for λ
\lambda =3
\lambda =\frac{1}{3}\approx 0.333333333
Share
Copied to clipboard
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\left(\frac{2\sqrt{3}}{3}\right)^{2}=0
Use the distributive property to multiply \frac{7}{3}-\lambda by 1-\lambda and combine like terms.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=0
To raise \frac{2\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}=0
Expand \left(2\sqrt{3}\right)^{2}.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}=0
Calculate 2 to the power of 2 and get 4.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{4\times 3}{3^{2}}=0
The square of \sqrt{3} is 3.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{12}{3^{2}}=0
Multiply 4 and 3 to get 12.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{12}{9}=0
Calculate 3 to the power of 2 and get 9.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{4}{3}=0
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
1-\frac{10}{3}\lambda +\lambda ^{2}=0
Subtract \frac{4}{3} from \frac{7}{3} to get 1.
\lambda ^{2}-\frac{10}{3}\lambda +1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-\left(-\frac{10}{3}\right)±\sqrt{\left(-\frac{10}{3}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{10}{3} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-\frac{10}{3}\right)±\sqrt{\frac{100}{9}-4}}{2}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
\lambda =\frac{-\left(-\frac{10}{3}\right)±\sqrt{\frac{64}{9}}}{2}
Add \frac{100}{9} to -4.
\lambda =\frac{-\left(-\frac{10}{3}\right)±\frac{8}{3}}{2}
Take the square root of \frac{64}{9}.
\lambda =\frac{\frac{10}{3}±\frac{8}{3}}{2}
The opposite of -\frac{10}{3} is \frac{10}{3}.
\lambda =\frac{6}{2}
Now solve the equation \lambda =\frac{\frac{10}{3}±\frac{8}{3}}{2} when ± is plus. Add \frac{10}{3} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\lambda =3
Divide 6 by 2.
\lambda =\frac{\frac{2}{3}}{2}
Now solve the equation \lambda =\frac{\frac{10}{3}±\frac{8}{3}}{2} when ± is minus. Subtract \frac{8}{3} from \frac{10}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
\lambda =\frac{1}{3}
Divide \frac{2}{3} by 2.
\lambda =3 \lambda =\frac{1}{3}
The equation is now solved.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\left(\frac{2\sqrt{3}}{3}\right)^{2}=0
Use the distributive property to multiply \frac{7}{3}-\lambda by 1-\lambda and combine like terms.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=0
To raise \frac{2\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}=0
Expand \left(2\sqrt{3}\right)^{2}.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}=0
Calculate 2 to the power of 2 and get 4.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{4\times 3}{3^{2}}=0
The square of \sqrt{3} is 3.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{12}{3^{2}}=0
Multiply 4 and 3 to get 12.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{12}{9}=0
Calculate 3 to the power of 2 and get 9.
\frac{7}{3}-\frac{10}{3}\lambda +\lambda ^{2}-\frac{4}{3}=0
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
1-\frac{10}{3}\lambda +\lambda ^{2}=0
Subtract \frac{4}{3} from \frac{7}{3} to get 1.
-\frac{10}{3}\lambda +\lambda ^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\lambda ^{2}-\frac{10}{3}\lambda =-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\lambda ^{2}-\frac{10}{3}\lambda +\left(-\frac{5}{3}\right)^{2}=-1+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-\frac{10}{3}\lambda +\frac{25}{9}=-1+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-\frac{10}{3}\lambda +\frac{25}{9}=\frac{16}{9}
Add -1 to \frac{25}{9}.
\left(\lambda -\frac{5}{3}\right)^{2}=\frac{16}{9}
Factor \lambda ^{2}-\frac{10}{3}\lambda +\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{5}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
\lambda -\frac{5}{3}=\frac{4}{3} \lambda -\frac{5}{3}=-\frac{4}{3}
Simplify.
\lambda =3 \lambda =\frac{1}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}