Evaluate
\frac{8y^{15}}{z^{3}x^{9}}
Expand
\frac{8y^{15}}{z^{3}x^{9}}
Share
Copied to clipboard
\left(\frac{y^{-2}x^{3}}{2\times \frac{1}{z}y^{3}}\right)^{-3}
Cancel out 6x in both numerator and denominator.
\left(\frac{x^{3}}{2\times \frac{1}{z}y^{5}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{x^{3}}{\frac{2}{z}y^{5}}\right)^{-3}
Express 2\times \frac{1}{z} as a single fraction.
\left(\frac{x^{3}}{\frac{2y^{5}}{z}}\right)^{-3}
Express \frac{2}{z}y^{5} as a single fraction.
\left(\frac{x^{3}z}{2y^{5}}\right)^{-3}
Divide x^{3} by \frac{2y^{5}}{z} by multiplying x^{3} by the reciprocal of \frac{2y^{5}}{z}.
\frac{\left(x^{3}z\right)^{-3}}{\left(2y^{5}\right)^{-3}}
To raise \frac{x^{3}z}{2y^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{3}\right)^{-3}z^{-3}}{\left(2y^{5}\right)^{-3}}
Expand \left(x^{3}z\right)^{-3}.
\frac{x^{-9}z^{-3}}{\left(2y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{x^{-9}z^{-3}}{2^{-3}\left(y^{5}\right)^{-3}}
Expand \left(2y^{5}\right)^{-3}.
\frac{x^{-9}z^{-3}}{2^{-3}y^{-15}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
\frac{x^{-9}z^{-3}}{\frac{1}{8}y^{-15}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\left(\frac{y^{-2}x^{3}}{2\times \frac{1}{z}y^{3}}\right)^{-3}
Cancel out 6x in both numerator and denominator.
\left(\frac{x^{3}}{2\times \frac{1}{z}y^{5}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{x^{3}}{\frac{2}{z}y^{5}}\right)^{-3}
Express 2\times \frac{1}{z} as a single fraction.
\left(\frac{x^{3}}{\frac{2y^{5}}{z}}\right)^{-3}
Express \frac{2}{z}y^{5} as a single fraction.
\left(\frac{x^{3}z}{2y^{5}}\right)^{-3}
Divide x^{3} by \frac{2y^{5}}{z} by multiplying x^{3} by the reciprocal of \frac{2y^{5}}{z}.
\frac{\left(x^{3}z\right)^{-3}}{\left(2y^{5}\right)^{-3}}
To raise \frac{x^{3}z}{2y^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{3}\right)^{-3}z^{-3}}{\left(2y^{5}\right)^{-3}}
Expand \left(x^{3}z\right)^{-3}.
\frac{x^{-9}z^{-3}}{\left(2y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{x^{-9}z^{-3}}{2^{-3}\left(y^{5}\right)^{-3}}
Expand \left(2y^{5}\right)^{-3}.
\frac{x^{-9}z^{-3}}{2^{-3}y^{-15}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
\frac{x^{-9}z^{-3}}{\frac{1}{8}y^{-15}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}