( \frac { 6 } { 5 } - ( - \frac { 3 } { 5 } + \frac { 1 } { 6 } + \frac { 2 } { 15 } ) \cdot ( - \frac { 5 } { 4 } ) ] \cdot ( \frac { 2 } { 3 } - \frac { 5 } { 6 } + 1 )
Evaluate
\frac{11}{16}=0.6875
Factor
\frac{11}{2 ^ {4}} = 0.6875
Share
Copied to clipboard
\left(\frac{6}{5}-\left(-\frac{18}{30}+\frac{5}{30}+\frac{2}{15}\right)\left(-\frac{5}{4}\right)\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Least common multiple of 5 and 6 is 30. Convert -\frac{3}{5} and \frac{1}{6} to fractions with denominator 30.
\left(\frac{6}{5}-\left(\frac{-18+5}{30}+\frac{2}{15}\right)\left(-\frac{5}{4}\right)\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Since -\frac{18}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\left(\frac{6}{5}-\left(-\frac{13}{30}+\frac{2}{15}\right)\left(-\frac{5}{4}\right)\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Add -18 and 5 to get -13.
\left(\frac{6}{5}-\left(-\frac{13}{30}+\frac{4}{30}\right)\left(-\frac{5}{4}\right)\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Least common multiple of 30 and 15 is 30. Convert -\frac{13}{30} and \frac{2}{15} to fractions with denominator 30.
\left(\frac{6}{5}-\frac{-13+4}{30}\left(-\frac{5}{4}\right)\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Since -\frac{13}{30} and \frac{4}{30} have the same denominator, add them by adding their numerators.
\left(\frac{6}{5}-\frac{-9}{30}\left(-\frac{5}{4}\right)\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Add -13 and 4 to get -9.
\left(\frac{6}{5}-\left(-\frac{3}{10}\left(-\frac{5}{4}\right)\right)\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Reduce the fraction \frac{-9}{30} to lowest terms by extracting and canceling out 3.
\left(\frac{6}{5}-\frac{-3\left(-5\right)}{10\times 4}\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Multiply -\frac{3}{10} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{6}{5}-\frac{15}{40}\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Do the multiplications in the fraction \frac{-3\left(-5\right)}{10\times 4}.
\left(\frac{6}{5}-\frac{3}{8}\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Reduce the fraction \frac{15}{40} to lowest terms by extracting and canceling out 5.
\left(\frac{48}{40}-\frac{15}{40}\right)\left(\frac{2}{3}-\frac{5}{6}+1\right)
Least common multiple of 5 and 8 is 40. Convert \frac{6}{5} and \frac{3}{8} to fractions with denominator 40.
\frac{48-15}{40}\left(\frac{2}{3}-\frac{5}{6}+1\right)
Since \frac{48}{40} and \frac{15}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{40}\left(\frac{2}{3}-\frac{5}{6}+1\right)
Subtract 15 from 48 to get 33.
\frac{33}{40}\left(\frac{4}{6}-\frac{5}{6}+1\right)
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{33}{40}\left(\frac{4-5}{6}+1\right)
Since \frac{4}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{40}\left(-\frac{1}{6}+1\right)
Subtract 5 from 4 to get -1.
\frac{33}{40}\left(-\frac{1}{6}+\frac{6}{6}\right)
Convert 1 to fraction \frac{6}{6}.
\frac{33}{40}\times \frac{-1+6}{6}
Since -\frac{1}{6} and \frac{6}{6} have the same denominator, add them by adding their numerators.
\frac{33}{40}\times \frac{5}{6}
Add -1 and 6 to get 5.
\frac{33\times 5}{40\times 6}
Multiply \frac{33}{40} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{165}{240}
Do the multiplications in the fraction \frac{33\times 5}{40\times 6}.
\frac{11}{16}
Reduce the fraction \frac{165}{240} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}