Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{5}{x+2}+\frac{\left(-x+2\right)\left(x+2\right)}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x+2}{x+2}.
\frac{\frac{5+\left(-x+2\right)\left(x+2\right)}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
Since \frac{5}{x+2} and \frac{\left(-x+2\right)\left(x+2\right)}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{5-x^{2}-2x+2x+4}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
Do the multiplications in 5+\left(-x+2\right)\left(x+2\right).
\frac{\frac{9-x^{2}}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
Combine like terms in 5-x^{2}-2x+2x+4.
\frac{\left(9-x^{2}\right)\left(x+2\right)}{\left(x+2\right)\left(x^{2}-6x+9\right)}
Divide \frac{9-x^{2}}{x+2} by \frac{x^{2}-6x+9}{x+2} by multiplying \frac{9-x^{2}}{x+2} by the reciprocal of \frac{x^{2}-6x+9}{x+2}.
\frac{-x^{2}+9}{x^{2}-6x+9}
Cancel out x+2 in both numerator and denominator.
\frac{\left(x-3\right)\left(-x-3\right)}{\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x-3}{x-3}
Cancel out x-3 in both numerator and denominator.
\frac{\frac{5}{x+2}+\frac{\left(-x+2\right)\left(x+2\right)}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x+2}{x+2}.
\frac{\frac{5+\left(-x+2\right)\left(x+2\right)}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
Since \frac{5}{x+2} and \frac{\left(-x+2\right)\left(x+2\right)}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{5-x^{2}-2x+2x+4}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
Do the multiplications in 5+\left(-x+2\right)\left(x+2\right).
\frac{\frac{9-x^{2}}{x+2}}{\frac{x^{2}-6x+9}{x+2}}
Combine like terms in 5-x^{2}-2x+2x+4.
\frac{\left(9-x^{2}\right)\left(x+2\right)}{\left(x+2\right)\left(x^{2}-6x+9\right)}
Divide \frac{9-x^{2}}{x+2} by \frac{x^{2}-6x+9}{x+2} by multiplying \frac{9-x^{2}}{x+2} by the reciprocal of \frac{x^{2}-6x+9}{x+2}.
\frac{-x^{2}+9}{x^{2}-6x+9}
Cancel out x+2 in both numerator and denominator.
\frac{\left(x-3\right)\left(-x-3\right)}{\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x-3}{x-3}
Cancel out x-3 in both numerator and denominator.