Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\frac{5}{7}-\frac{1}{49}=\frac{40}{49}x\left(\frac{3}{2}-\left(\frac{6}{15}+\frac{8}{15}\right)\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{35}{49}-\frac{1}{49}=\frac{40}{49}x\left(\frac{3}{2}-\left(\frac{6}{15}+\frac{8}{15}\right)\right)
Least common multiple of 7 and 49 is 49. Convert \frac{5}{7} and \frac{1}{49} to fractions with denominator 49.
\frac{35-1}{49}=\frac{40}{49}x\left(\frac{3}{2}-\left(\frac{6}{15}+\frac{8}{15}\right)\right)
Since \frac{35}{49} and \frac{1}{49} have the same denominator, subtract them by subtracting their numerators.
\frac{34}{49}=\frac{40}{49}x\left(\frac{3}{2}-\left(\frac{6}{15}+\frac{8}{15}\right)\right)
Subtract 1 from 35 to get 34.
\frac{34}{49}=\frac{40}{49}x\left(\frac{3}{2}-\left(\frac{2}{5}+\frac{8}{15}\right)\right)
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\frac{34}{49}=\frac{40}{49}x\left(\frac{3}{2}-\left(\frac{6}{15}+\frac{8}{15}\right)\right)
Least common multiple of 5 and 15 is 15. Convert \frac{2}{5} and \frac{8}{15} to fractions with denominator 15.
\frac{34}{49}=\frac{40}{49}x\left(\frac{3}{2}-\frac{6+8}{15}\right)
Since \frac{6}{15} and \frac{8}{15} have the same denominator, add them by adding their numerators.
\frac{34}{49}=\frac{40}{49}x\left(\frac{3}{2}-\frac{14}{15}\right)
Add 6 and 8 to get 14.
\frac{34}{49}=\frac{40}{49}x\left(\frac{45}{30}-\frac{28}{30}\right)
Least common multiple of 2 and 15 is 30. Convert \frac{3}{2} and \frac{14}{15} to fractions with denominator 30.
\frac{34}{49}=\frac{40}{49}x\times \frac{45-28}{30}
Since \frac{45}{30} and \frac{28}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{34}{49}=\frac{40}{49}x\times \frac{17}{30}
Subtract 28 from 45 to get 17.
\frac{34}{49}=\frac{40\times 17}{49\times 30}x
Multiply \frac{40}{49} times \frac{17}{30} by multiplying numerator times numerator and denominator times denominator.
\frac{34}{49}=\frac{680}{1470}x
Do the multiplications in the fraction \frac{40\times 17}{49\times 30}.
\frac{34}{49}=\frac{68}{147}x
Reduce the fraction \frac{680}{1470} to lowest terms by extracting and canceling out 10.
\frac{68}{147}x=\frac{34}{49}
Swap sides so that all variable terms are on the left hand side.
x=\frac{34}{49}\times \frac{147}{68}
Multiply both sides by \frac{147}{68}, the reciprocal of \frac{68}{147}.
x=\frac{34\times 147}{49\times 68}
Multiply \frac{34}{49} times \frac{147}{68} by multiplying numerator times numerator and denominator times denominator.
x=\frac{4998}{3332}
Do the multiplications in the fraction \frac{34\times 147}{49\times 68}.
x=\frac{3}{2}
Reduce the fraction \frac{4998}{3332} to lowest terms by extracting and canceling out 1666.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}