Evaluate
\frac{204499}{70560}\approx 2.898228458
Factor
\frac{37 \cdot 5527}{2 ^ {5} \cdot 3 ^ {2} \cdot 5 \cdot 7 ^ {2}} = 2\frac{63379}{70560} = 2.8982284580498865
Share
Copied to clipboard
\frac{5}{3}\times \frac{5}{3^{2}}+\frac{6}{4}\times \frac{5}{4^{2}}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Divide 5 by 5 to get 1.
\frac{5}{3}\times \frac{5}{9}+\frac{6}{4}\times \frac{5}{4^{2}}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Calculate 3 to the power of 2 and get 9.
\frac{5\times 5}{3\times 9}+\frac{6}{4}\times \frac{5}{4^{2}}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Multiply \frac{5}{3} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{27}+\frac{6}{4}\times \frac{5}{4^{2}}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Do the multiplications in the fraction \frac{5\times 5}{3\times 9}.
\frac{25}{27}+\frac{3}{2}\times \frac{5}{4^{2}}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{25}{27}+\frac{3}{2}\times \frac{5}{16}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Calculate 4 to the power of 2 and get 16.
\frac{25}{27}+\frac{3\times 5}{2\times 16}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Multiply \frac{3}{2} times \frac{5}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{27}+\frac{15}{32}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Do the multiplications in the fraction \frac{3\times 5}{2\times 16}.
\frac{800}{864}+\frac{405}{864}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Least common multiple of 27 and 32 is 864. Convert \frac{25}{27} and \frac{15}{32} to fractions with denominator 864.
\frac{800+405}{864}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Since \frac{800}{864} and \frac{405}{864} have the same denominator, add them by adding their numerators.
\frac{1205}{864}+\frac{2}{5}\times 1+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Add 800 and 405 to get 1205.
\frac{1205}{864}+\frac{2}{5}+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Multiply \frac{2}{5} and 1 to get \frac{2}{5}.
\frac{6025}{4320}+\frac{1728}{4320}+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Least common multiple of 864 and 5 is 4320. Convert \frac{1205}{864} and \frac{2}{5} to fractions with denominator 4320.
\frac{6025+1728}{4320}+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Since \frac{6025}{4320} and \frac{1728}{4320} have the same denominator, add them by adding their numerators.
\frac{7753}{4320}+\frac{8}{6}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Add 6025 and 1728 to get 7753.
\frac{7753}{4320}+\frac{4}{3}\times \frac{5}{6^{2}}+\frac{9}{7}\times \frac{5}{7}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{7753}{4320}+\frac{4}{3}\times \frac{5}{36}+\frac{9}{7}\times \frac{5}{7}
Calculate 6 to the power of 2 and get 36.
\frac{7753}{4320}+\frac{4\times 5}{3\times 36}+\frac{9}{7}\times \frac{5}{7}
Multiply \frac{4}{3} times \frac{5}{36} by multiplying numerator times numerator and denominator times denominator.
\frac{7753}{4320}+\frac{20}{108}+\frac{9}{7}\times \frac{5}{7}
Do the multiplications in the fraction \frac{4\times 5}{3\times 36}.
\frac{7753}{4320}+\frac{5}{27}+\frac{9}{7}\times \frac{5}{7}
Reduce the fraction \frac{20}{108} to lowest terms by extracting and canceling out 4.
\frac{7753}{4320}+\frac{800}{4320}+\frac{9}{7}\times \frac{5}{7}
Least common multiple of 4320 and 27 is 4320. Convert \frac{7753}{4320} and \frac{5}{27} to fractions with denominator 4320.
\frac{7753+800}{4320}+\frac{9}{7}\times \frac{5}{7}
Since \frac{7753}{4320} and \frac{800}{4320} have the same denominator, add them by adding their numerators.
\frac{8553}{4320}+\frac{9}{7}\times \frac{5}{7}
Add 7753 and 800 to get 8553.
\frac{2851}{1440}+\frac{9}{7}\times \frac{5}{7}
Reduce the fraction \frac{8553}{4320} to lowest terms by extracting and canceling out 3.
\frac{2851}{1440}+\frac{9\times 5}{7\times 7}
Multiply \frac{9}{7} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{2851}{1440}+\frac{45}{49}
Do the multiplications in the fraction \frac{9\times 5}{7\times 7}.
\frac{139699}{70560}+\frac{64800}{70560}
Least common multiple of 1440 and 49 is 70560. Convert \frac{2851}{1440} and \frac{45}{49} to fractions with denominator 70560.
\frac{139699+64800}{70560}
Since \frac{139699}{70560} and \frac{64800}{70560} have the same denominator, add them by adding their numerators.
\frac{204499}{70560}
Add 139699 and 64800 to get 204499.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}