Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{4}y\right)^{2}+y^{2}=150^{2}
Divide 4y by 16 to get \frac{1}{4}y.
\left(\frac{1}{4}\right)^{2}y^{2}+y^{2}=150^{2}
Expand \left(\frac{1}{4}y\right)^{2}.
\frac{1}{16}y^{2}+y^{2}=150^{2}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{17}{16}y^{2}=150^{2}
Combine \frac{1}{16}y^{2} and y^{2} to get \frac{17}{16}y^{2}.
\frac{17}{16}y^{2}=22500
Calculate 150 to the power of 2 and get 22500.
y^{2}=22500\times \frac{16}{17}
Multiply both sides by \frac{16}{17}, the reciprocal of \frac{17}{16}.
y^{2}=\frac{360000}{17}
Multiply 22500 and \frac{16}{17} to get \frac{360000}{17}.
y=\frac{600\sqrt{17}}{17} y=-\frac{600\sqrt{17}}{17}
Take the square root of both sides of the equation.
\left(\frac{1}{4}y\right)^{2}+y^{2}=150^{2}
Divide 4y by 16 to get \frac{1}{4}y.
\left(\frac{1}{4}\right)^{2}y^{2}+y^{2}=150^{2}
Expand \left(\frac{1}{4}y\right)^{2}.
\frac{1}{16}y^{2}+y^{2}=150^{2}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{17}{16}y^{2}=150^{2}
Combine \frac{1}{16}y^{2} and y^{2} to get \frac{17}{16}y^{2}.
\frac{17}{16}y^{2}=22500
Calculate 150 to the power of 2 and get 22500.
\frac{17}{16}y^{2}-22500=0
Subtract 22500 from both sides.
y=\frac{0±\sqrt{0^{2}-4\times \frac{17}{16}\left(-22500\right)}}{2\times \frac{17}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{17}{16} for a, 0 for b, and -22500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{17}{16}\left(-22500\right)}}{2\times \frac{17}{16}}
Square 0.
y=\frac{0±\sqrt{-\frac{17}{4}\left(-22500\right)}}{2\times \frac{17}{16}}
Multiply -4 times \frac{17}{16}.
y=\frac{0±\sqrt{95625}}{2\times \frac{17}{16}}
Multiply -\frac{17}{4} times -22500.
y=\frac{0±75\sqrt{17}}{2\times \frac{17}{16}}
Take the square root of 95625.
y=\frac{0±75\sqrt{17}}{\frac{17}{8}}
Multiply 2 times \frac{17}{16}.
y=\frac{600\sqrt{17}}{17}
Now solve the equation y=\frac{0±75\sqrt{17}}{\frac{17}{8}} when ± is plus.
y=-\frac{600\sqrt{17}}{17}
Now solve the equation y=\frac{0±75\sqrt{17}}{\frac{17}{8}} when ± is minus.
y=\frac{600\sqrt{17}}{17} y=-\frac{600\sqrt{17}}{17}
The equation is now solved.