Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{x^{-3}y^{-2}}{3y^{-5}\times \frac{1}{x}}\right)^{-3}
Cancel out 4 in both numerator and denominator.
\left(\frac{x^{-3}y^{3}}{3\times \frac{1}{x}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{y^{3}}{3x^{2}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(y^{3}\right)^{-3}}{\left(3x^{2}\right)^{-3}}
To raise \frac{y^{3}}{3x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{y^{-9}}{\left(3x^{2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{y^{-9}}{3^{-3}\left(x^{2}\right)^{-3}}
Expand \left(3x^{2}\right)^{-3}.
\frac{y^{-9}}{3^{-3}x^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{y^{-9}}{\frac{1}{27}x^{-6}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\left(\frac{x^{-3}y^{-2}}{3y^{-5}\times \frac{1}{x}}\right)^{-3}
Cancel out 4 in both numerator and denominator.
\left(\frac{x^{-3}y^{3}}{3\times \frac{1}{x}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{y^{3}}{3x^{2}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(y^{3}\right)^{-3}}{\left(3x^{2}\right)^{-3}}
To raise \frac{y^{3}}{3x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{y^{-9}}{\left(3x^{2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{y^{-9}}{3^{-3}\left(x^{2}\right)^{-3}}
Expand \left(3x^{2}\right)^{-3}.
\frac{y^{-9}}{3^{-3}x^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{y^{-9}}{\frac{1}{27}x^{-6}}
Calculate 3 to the power of -3 and get \frac{1}{27}.