Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{4}{9}\right)^{-2}}{\left(\frac{27}{8}\right)^{-3}}=\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\left(\frac{3}{2}\right)^{3}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\left(\frac{4}{9}\right)^{-2}}{\left(\frac{27}{8}\right)^{-3}}=\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{\frac{81}{16}}{\left(\frac{27}{8}\right)^{-3}}=\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate \frac{4}{9} to the power of -2 and get \frac{81}{16}.
\frac{\frac{81}{16}}{\frac{512}{19683}}=\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate \frac{27}{8} to the power of -3 and get \frac{512}{19683}.
\frac{81}{16}\times \frac{19683}{512}=\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Divide \frac{81}{16} by \frac{512}{19683} by multiplying \frac{81}{16} by the reciprocal of \frac{512}{19683}.
\frac{1594323}{8192}=\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Multiply \frac{81}{16} and \frac{19683}{512} to get \frac{1594323}{8192}.
\frac{1594323}{8192}=\frac{\left(\frac{4}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 2 to the power of 2 and get 4.
\frac{1594323}{8192}=\frac{\left(\frac{4}{9}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 3 to the power of 2 and get 9.
\frac{1594323}{8192}=\frac{\frac{81}{16}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate \frac{4}{9} to the power of -2 and get \frac{81}{16}.
\frac{1594323}{8192}=\frac{\frac{81}{16}}{\left(\frac{27}{2^{3}}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 3 to the power of 3 and get 27.
\frac{1594323}{8192}=\frac{\frac{81}{16}}{\left(\frac{27}{8}\right)^{-3}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 2 to the power of 3 and get 8.
\frac{1594323}{8192}=\frac{\frac{81}{16}}{\frac{512}{19683}}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate \frac{27}{8} to the power of -3 and get \frac{512}{19683}.
\frac{1594323}{8192}=\frac{81}{16}\times \frac{19683}{512}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Divide \frac{81}{16} by \frac{512}{19683} by multiplying \frac{81}{16} by the reciprocal of \frac{512}{19683}.
\frac{1594323}{8192}=\frac{1594323}{8192}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Multiply \frac{81}{16} and \frac{19683}{512} to get \frac{1594323}{8192}.
\text{true}\text{ and }\frac{\left(\frac{2^{2}}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Compare \frac{1594323}{8192} and \frac{1594323}{8192}.
\text{true}\text{ and }\frac{\left(\frac{4}{3^{2}}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 2 to the power of 2 and get 4.
\text{true}\text{ and }\frac{\left(\frac{4}{9}\right)^{-2}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 3 to the power of 2 and get 9.
\text{true}\text{ and }\frac{\frac{81}{16}}{\left(\frac{3^{3}}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate \frac{4}{9} to the power of -2 and get \frac{81}{16}.
\text{true}\text{ and }\frac{\frac{81}{16}}{\left(\frac{27}{2^{3}}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 3 to the power of 3 and get 27.
\text{true}\text{ and }\frac{\frac{81}{16}}{\left(\frac{27}{8}\right)^{-3}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate 2 to the power of 3 and get 8.
\text{true}\text{ and }\frac{\frac{81}{16}}{\frac{512}{19683}}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Calculate \frac{27}{8} to the power of -3 and get \frac{512}{19683}.
\text{true}\text{ and }\frac{81}{16}\times \frac{19683}{512}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Divide \frac{81}{16} by \frac{512}{19683} by multiplying \frac{81}{16} by the reciprocal of \frac{512}{19683}.
\text{true}\text{ and }\frac{1594323}{8192}=\frac{\left(\frac{2}{3}\right)^{-4}}{\left(\frac{3}{2}\right)^{-9}}
Multiply \frac{81}{16} and \frac{19683}{512} to get \frac{1594323}{8192}.
\text{true}\text{ and }\frac{1594323}{8192}=\frac{\frac{81}{16}}{\left(\frac{3}{2}\right)^{-9}}
Calculate \frac{2}{3} to the power of -4 and get \frac{81}{16}.
\text{true}\text{ and }\frac{1594323}{8192}=\frac{\frac{81}{16}}{\frac{512}{19683}}
Calculate \frac{3}{2} to the power of -9 and get \frac{512}{19683}.
\text{true}\text{ and }\frac{1594323}{8192}=\frac{81}{16}\times \frac{19683}{512}
Divide \frac{81}{16} by \frac{512}{19683} by multiplying \frac{81}{16} by the reciprocal of \frac{512}{19683}.
\text{true}\text{ and }\frac{1594323}{8192}=\frac{1594323}{8192}
Multiply \frac{81}{16} and \frac{19683}{512} to get \frac{1594323}{8192}.
\text{true}\text{ and }\text{true}
Compare \frac{1594323}{8192} and \frac{1594323}{8192}.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.