Evaluate
\frac{14x}{15}+\frac{28}{45}
Expand
\frac{14x}{15}+\frac{28}{45}
Graph
Share
Copied to clipboard
\left(\frac{4\times 4}{9}-\frac{1}{3}x-2\right)\left(-\frac{2}{5}\right)\times 7
Express \frac{4}{9}\times 4 as a single fraction.
\left(\frac{16}{9}-\frac{1}{3}x-2\right)\left(-\frac{2}{5}\right)\times 7
Multiply 4 and 4 to get 16.
\left(\frac{16}{9}-\frac{1}{3}x-\frac{18}{9}\right)\left(-\frac{2}{5}\right)\times 7
Convert 2 to fraction \frac{18}{9}.
\left(\frac{16-18}{9}-\frac{1}{3}x\right)\left(-\frac{2}{5}\right)\times 7
Since \frac{16}{9} and \frac{18}{9} have the same denominator, subtract them by subtracting their numerators.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\left(-\frac{2}{5}\right)\times 7
Subtract 18 from 16 to get -2.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\times \frac{-2\times 7}{5}
Express -\frac{2}{5}\times 7 as a single fraction.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\times \frac{-14}{5}
Multiply -2 and 7 to get -14.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\left(-\frac{14}{5}\right)
Fraction \frac{-14}{5} can be rewritten as -\frac{14}{5} by extracting the negative sign.
-\frac{2}{9}\left(-\frac{14}{5}\right)-\frac{1}{3}x\left(-\frac{14}{5}\right)
Use the distributive property to multiply -\frac{2}{9}-\frac{1}{3}x by -\frac{14}{5}.
\frac{-2\left(-14\right)}{9\times 5}-\frac{1}{3}x\left(-\frac{14}{5}\right)
Multiply -\frac{2}{9} times -\frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{45}-\frac{1}{3}x\left(-\frac{14}{5}\right)
Do the multiplications in the fraction \frac{-2\left(-14\right)}{9\times 5}.
\frac{28}{45}+\frac{-\left(-14\right)}{3\times 5}x
Multiply -\frac{1}{3} times -\frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{45}+\frac{14}{15}x
Do the multiplications in the fraction \frac{-\left(-14\right)}{3\times 5}.
\left(\frac{4\times 4}{9}-\frac{1}{3}x-2\right)\left(-\frac{2}{5}\right)\times 7
Express \frac{4}{9}\times 4 as a single fraction.
\left(\frac{16}{9}-\frac{1}{3}x-2\right)\left(-\frac{2}{5}\right)\times 7
Multiply 4 and 4 to get 16.
\left(\frac{16}{9}-\frac{1}{3}x-\frac{18}{9}\right)\left(-\frac{2}{5}\right)\times 7
Convert 2 to fraction \frac{18}{9}.
\left(\frac{16-18}{9}-\frac{1}{3}x\right)\left(-\frac{2}{5}\right)\times 7
Since \frac{16}{9} and \frac{18}{9} have the same denominator, subtract them by subtracting their numerators.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\left(-\frac{2}{5}\right)\times 7
Subtract 18 from 16 to get -2.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\times \frac{-2\times 7}{5}
Express -\frac{2}{5}\times 7 as a single fraction.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\times \frac{-14}{5}
Multiply -2 and 7 to get -14.
\left(-\frac{2}{9}-\frac{1}{3}x\right)\left(-\frac{14}{5}\right)
Fraction \frac{-14}{5} can be rewritten as -\frac{14}{5} by extracting the negative sign.
-\frac{2}{9}\left(-\frac{14}{5}\right)-\frac{1}{3}x\left(-\frac{14}{5}\right)
Use the distributive property to multiply -\frac{2}{9}-\frac{1}{3}x by -\frac{14}{5}.
\frac{-2\left(-14\right)}{9\times 5}-\frac{1}{3}x\left(-\frac{14}{5}\right)
Multiply -\frac{2}{9} times -\frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{45}-\frac{1}{3}x\left(-\frac{14}{5}\right)
Do the multiplications in the fraction \frac{-2\left(-14\right)}{9\times 5}.
\frac{28}{45}+\frac{-\left(-14\right)}{3\times 5}x
Multiply -\frac{1}{3} times -\frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{45}+\frac{14}{15}x
Do the multiplications in the fraction \frac{-\left(-14\right)}{3\times 5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}