Solve for u
u = \frac{\sqrt{42}}{6} \approx 1.08012345
u = -\frac{\sqrt{42}}{6} \approx -1.08012345
Share
Copied to clipboard
\frac{2}{3}=\frac{2}{5}\times \left(\frac{5}{6}\right)^{2}+\frac{1}{3}u^{2}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}=\frac{2}{5}\times \frac{25}{36}+\frac{1}{3}u^{2}
Calculate \frac{5}{6} to the power of 2 and get \frac{25}{36}.
\frac{2}{3}=\frac{5}{18}+\frac{1}{3}u^{2}
Multiply \frac{2}{5} and \frac{25}{36} to get \frac{5}{18}.
\frac{5}{18}+\frac{1}{3}u^{2}=\frac{2}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}u^{2}=\frac{2}{3}-\frac{5}{18}
Subtract \frac{5}{18} from both sides.
\frac{1}{3}u^{2}=\frac{7}{18}
Subtract \frac{5}{18} from \frac{2}{3} to get \frac{7}{18}.
u^{2}=\frac{7}{18}\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
u^{2}=\frac{7}{6}
Multiply \frac{7}{18} and 3 to get \frac{7}{6}.
u=\frac{\sqrt{42}}{6} u=-\frac{\sqrt{42}}{6}
Take the square root of both sides of the equation.
\frac{2}{3}=\frac{2}{5}\times \left(\frac{5}{6}\right)^{2}+\frac{1}{3}u^{2}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}=\frac{2}{5}\times \frac{25}{36}+\frac{1}{3}u^{2}
Calculate \frac{5}{6} to the power of 2 and get \frac{25}{36}.
\frac{2}{3}=\frac{5}{18}+\frac{1}{3}u^{2}
Multiply \frac{2}{5} and \frac{25}{36} to get \frac{5}{18}.
\frac{5}{18}+\frac{1}{3}u^{2}=\frac{2}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{5}{18}+\frac{1}{3}u^{2}-\frac{2}{3}=0
Subtract \frac{2}{3} from both sides.
-\frac{7}{18}+\frac{1}{3}u^{2}=0
Subtract \frac{2}{3} from \frac{5}{18} to get -\frac{7}{18}.
\frac{1}{3}u^{2}-\frac{7}{18}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
u=\frac{0±\sqrt{0^{2}-4\times \frac{1}{3}\left(-\frac{7}{18}\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, 0 for b, and -\frac{7}{18} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{0±\sqrt{-4\times \frac{1}{3}\left(-\frac{7}{18}\right)}}{2\times \frac{1}{3}}
Square 0.
u=\frac{0±\sqrt{-\frac{4}{3}\left(-\frac{7}{18}\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
u=\frac{0±\sqrt{\frac{14}{27}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -\frac{7}{18} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
u=\frac{0±\frac{\sqrt{42}}{9}}{2\times \frac{1}{3}}
Take the square root of \frac{14}{27}.
u=\frac{0±\frac{\sqrt{42}}{9}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
u=\frac{\sqrt{42}}{6}
Now solve the equation u=\frac{0±\frac{\sqrt{42}}{9}}{\frac{2}{3}} when ± is plus.
u=-\frac{\sqrt{42}}{6}
Now solve the equation u=\frac{0±\frac{\sqrt{42}}{9}}{\frac{2}{3}} when ± is minus.
u=\frac{\sqrt{42}}{6} u=-\frac{\sqrt{42}}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}