Solve for x
x = \frac{25}{12} = 2\frac{1}{12} \approx 2.083333333
x=\frac{5}{12}\approx 0.416666667
Graph
Share
Copied to clipboard
\frac{4}{5}x-1=\frac{2}{3} \frac{4}{5}x-1=-\frac{2}{3}
Take the square root of both sides of the equation.
\frac{4}{5}x-1-\left(-1\right)=\frac{2}{3}-\left(-1\right) \frac{4}{5}x-1-\left(-1\right)=-\frac{2}{3}-\left(-1\right)
Add 1 to both sides of the equation.
\frac{4}{5}x=\frac{2}{3}-\left(-1\right) \frac{4}{5}x=-\frac{2}{3}-\left(-1\right)
Subtracting -1 from itself leaves 0.
\frac{4}{5}x=\frac{5}{3}
Subtract -1 from \frac{2}{3}.
\frac{4}{5}x=\frac{1}{3}
Subtract -1 from -\frac{2}{3}.
\frac{\frac{4}{5}x}{\frac{4}{5}}=\frac{\frac{5}{3}}{\frac{4}{5}} \frac{\frac{4}{5}x}{\frac{4}{5}}=\frac{\frac{1}{3}}{\frac{4}{5}}
Divide both sides of the equation by \frac{4}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{5}{3}}{\frac{4}{5}} x=\frac{\frac{1}{3}}{\frac{4}{5}}
Dividing by \frac{4}{5} undoes the multiplication by \frac{4}{5}.
x=\frac{25}{12}
Divide \frac{5}{3} by \frac{4}{5} by multiplying \frac{5}{3} by the reciprocal of \frac{4}{5}.
x=\frac{5}{12}
Divide \frac{1}{3} by \frac{4}{5} by multiplying \frac{1}{3} by the reciprocal of \frac{4}{5}.
x=\frac{25}{12} x=\frac{5}{12}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}