Solve for a
a = \frac{\sqrt{91} - 4}{5} \approx 1.107878403
a=\frac{-\sqrt{91}-4}{5}\approx -2.707878403
Share
Copied to clipboard
\left(a+\frac{4}{5}\right)^{2}+\frac{9}{25}-\frac{9}{25}=4-\frac{9}{25}
Subtract \frac{9}{25} from both sides of the equation.
\left(a+\frac{4}{5}\right)^{2}=4-\frac{9}{25}
Subtracting \frac{9}{25} from itself leaves 0.
\left(a+\frac{4}{5}\right)^{2}=\frac{91}{25}
Subtract \frac{9}{25} from 4.
a+\frac{4}{5}=\frac{\sqrt{91}}{5} a+\frac{4}{5}=-\frac{\sqrt{91}}{5}
Take the square root of both sides of the equation.
a+\frac{4}{5}-\frac{4}{5}=\frac{\sqrt{91}}{5}-\frac{4}{5} a+\frac{4}{5}-\frac{4}{5}=-\frac{\sqrt{91}}{5}-\frac{4}{5}
Subtract \frac{4}{5} from both sides of the equation.
a=\frac{\sqrt{91}}{5}-\frac{4}{5} a=-\frac{\sqrt{91}}{5}-\frac{4}{5}
Subtracting \frac{4}{5} from itself leaves 0.
a=\frac{\sqrt{91}-4}{5}
Subtract \frac{4}{5} from \frac{\sqrt{91}}{5}.
a=\frac{-\sqrt{91}-4}{5}
Subtract \frac{4}{5} from -\frac{\sqrt{91}}{5}.
a=\frac{\sqrt{91}-4}{5} a=\frac{-\sqrt{91}-4}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}