Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{16}{9}x^{2}-\frac{40}{3}x+25+x^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}x-5\right)^{2}.
\frac{25}{9}x^{2}-\frac{40}{3}x+25=25
Combine \frac{16}{9}x^{2} and x^{2} to get \frac{25}{9}x^{2}.
\frac{25}{9}x^{2}-\frac{40}{3}x+25-25=0
Subtract 25 from both sides.
\frac{25}{9}x^{2}-\frac{40}{3}x=0
Subtract 25 from 25 to get 0.
x\left(\frac{25}{9}x-\frac{40}{3}\right)=0
Factor out x.
x=0 x=\frac{24}{5}
To find equation solutions, solve x=0 and \frac{25x}{9}-\frac{40}{3}=0.
\frac{16}{9}x^{2}-\frac{40}{3}x+25+x^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}x-5\right)^{2}.
\frac{25}{9}x^{2}-\frac{40}{3}x+25=25
Combine \frac{16}{9}x^{2} and x^{2} to get \frac{25}{9}x^{2}.
\frac{25}{9}x^{2}-\frac{40}{3}x+25-25=0
Subtract 25 from both sides.
\frac{25}{9}x^{2}-\frac{40}{3}x=0
Subtract 25 from 25 to get 0.
x=\frac{-\left(-\frac{40}{3}\right)±\sqrt{\left(-\frac{40}{3}\right)^{2}}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{9} for a, -\frac{40}{3} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{40}{3}\right)±\frac{40}{3}}{2\times \frac{25}{9}}
Take the square root of \left(-\frac{40}{3}\right)^{2}.
x=\frac{\frac{40}{3}±\frac{40}{3}}{2\times \frac{25}{9}}
The opposite of -\frac{40}{3} is \frac{40}{3}.
x=\frac{\frac{40}{3}±\frac{40}{3}}{\frac{50}{9}}
Multiply 2 times \frac{25}{9}.
x=\frac{\frac{80}{3}}{\frac{50}{9}}
Now solve the equation x=\frac{\frac{40}{3}±\frac{40}{3}}{\frac{50}{9}} when ± is plus. Add \frac{40}{3} to \frac{40}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{24}{5}
Divide \frac{80}{3} by \frac{50}{9} by multiplying \frac{80}{3} by the reciprocal of \frac{50}{9}.
x=\frac{0}{\frac{50}{9}}
Now solve the equation x=\frac{\frac{40}{3}±\frac{40}{3}}{\frac{50}{9}} when ± is minus. Subtract \frac{40}{3} from \frac{40}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by \frac{50}{9} by multiplying 0 by the reciprocal of \frac{50}{9}.
x=\frac{24}{5} x=0
The equation is now solved.
\frac{16}{9}x^{2}-\frac{40}{3}x+25+x^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}x-5\right)^{2}.
\frac{25}{9}x^{2}-\frac{40}{3}x+25=25
Combine \frac{16}{9}x^{2} and x^{2} to get \frac{25}{9}x^{2}.
\frac{25}{9}x^{2}-\frac{40}{3}x=25-25
Subtract 25 from both sides.
\frac{25}{9}x^{2}-\frac{40}{3}x=0
Subtract 25 from 25 to get 0.
\frac{\frac{25}{9}x^{2}-\frac{40}{3}x}{\frac{25}{9}}=\frac{0}{\frac{25}{9}}
Divide both sides of the equation by \frac{25}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{40}{3}}{\frac{25}{9}}\right)x=\frac{0}{\frac{25}{9}}
Dividing by \frac{25}{9} undoes the multiplication by \frac{25}{9}.
x^{2}-\frac{24}{5}x=\frac{0}{\frac{25}{9}}
Divide -\frac{40}{3} by \frac{25}{9} by multiplying -\frac{40}{3} by the reciprocal of \frac{25}{9}.
x^{2}-\frac{24}{5}x=0
Divide 0 by \frac{25}{9} by multiplying 0 by the reciprocal of \frac{25}{9}.
x^{2}-\frac{24}{5}x+\left(-\frac{12}{5}\right)^{2}=\left(-\frac{12}{5}\right)^{2}
Divide -\frac{24}{5}, the coefficient of the x term, by 2 to get -\frac{12}{5}. Then add the square of -\frac{12}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{24}{5}x+\frac{144}{25}=\frac{144}{25}
Square -\frac{12}{5} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{12}{5}\right)^{2}=\frac{144}{25}
Factor x^{2}-\frac{24}{5}x+\frac{144}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{12}{5}\right)^{2}}=\sqrt{\frac{144}{25}}
Take the square root of both sides of the equation.
x-\frac{12}{5}=\frac{12}{5} x-\frac{12}{5}=-\frac{12}{5}
Simplify.
x=\frac{24}{5} x=0
Add \frac{12}{5} to both sides of the equation.