Evaluate
\frac{241}{13}\approx 18.538461538
Factor
\frac{241}{13} = 18\frac{7}{13} = 18.53846153846154
Share
Copied to clipboard
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\left(\frac{2\sqrt{13}}{13}+1\sqrt{13}\right)^{2}
To raise \frac{4\sqrt{13}}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\left(\frac{15}{13}\sqrt{13}\right)^{2}
Combine \frac{2\sqrt{13}}{13} and 1\sqrt{13} to get \frac{15}{13}\sqrt{13}.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\left(\frac{15}{13}\right)^{2}\left(\sqrt{13}\right)^{2}
Expand \left(\frac{15}{13}\sqrt{13}\right)^{2}.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{169}\left(\sqrt{13}\right)^{2}
Calculate \frac{15}{13} to the power of 2 and get \frac{225}{169}.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{169}\times 13
The square of \sqrt{13} is 13.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{13}
Multiply \frac{225}{169} and 13 to get \frac{225}{13}.
\frac{\left(4\sqrt{13}\right)^{2}}{169}+\frac{225\times 13}{169}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 13^{2} and 13 is 169. Multiply \frac{225}{13} times \frac{13}{13}.
\frac{\left(4\sqrt{13}\right)^{2}+225\times 13}{169}
Since \frac{\left(4\sqrt{13}\right)^{2}}{169} and \frac{225\times 13}{169} have the same denominator, add them by adding their numerators.
\frac{4^{2}\left(\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{13}
Expand \left(4\sqrt{13}\right)^{2}.
\frac{16\left(\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{13}
Calculate 4 to the power of 2 and get 16.
\frac{16\times 13}{13^{2}}+\frac{225}{13}
The square of \sqrt{13} is 13.
\frac{208}{13^{2}}+\frac{225}{13}
Multiply 16 and 13 to get 208.
\frac{208}{169}+\frac{225}{13}
Calculate 13 to the power of 2 and get 169.
\frac{16}{13}+\frac{225}{13}
Reduce the fraction \frac{208}{169} to lowest terms by extracting and canceling out 13.
\frac{241}{13}
Add \frac{16}{13} and \frac{225}{13} to get \frac{241}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}