Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\left(\frac{2\sqrt{13}}{13}+1\sqrt{13}\right)^{2}
To raise \frac{4\sqrt{13}}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\left(\frac{15}{13}\sqrt{13}\right)^{2}
Combine \frac{2\sqrt{13}}{13} and 1\sqrt{13} to get \frac{15}{13}\sqrt{13}.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\left(\frac{15}{13}\right)^{2}\left(\sqrt{13}\right)^{2}
Expand \left(\frac{15}{13}\sqrt{13}\right)^{2}.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{169}\left(\sqrt{13}\right)^{2}
Calculate \frac{15}{13} to the power of 2 and get \frac{225}{169}.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{169}\times 13
The square of \sqrt{13} is 13.
\frac{\left(4\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{13}
Multiply \frac{225}{169} and 13 to get \frac{225}{13}.
\frac{\left(4\sqrt{13}\right)^{2}}{169}+\frac{225\times 13}{169}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 13^{2} and 13 is 169. Multiply \frac{225}{13} times \frac{13}{13}.
\frac{\left(4\sqrt{13}\right)^{2}+225\times 13}{169}
Since \frac{\left(4\sqrt{13}\right)^{2}}{169} and \frac{225\times 13}{169} have the same denominator, add them by adding their numerators.
\frac{4^{2}\left(\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{13}
Expand \left(4\sqrt{13}\right)^{2}.
\frac{16\left(\sqrt{13}\right)^{2}}{13^{2}}+\frac{225}{13}
Calculate 4 to the power of 2 and get 16.
\frac{16\times 13}{13^{2}}+\frac{225}{13}
The square of \sqrt{13} is 13.
\frac{208}{13^{2}}+\frac{225}{13}
Multiply 16 and 13 to get 208.
\frac{208}{169}+\frac{225}{13}
Calculate 13 to the power of 2 and get 169.
\frac{16}{13}+\frac{225}{13}
Reduce the fraction \frac{208}{169} to lowest terms by extracting and canceling out 13.
\frac{241}{13}
Add \frac{16}{13} and \frac{225}{13} to get \frac{241}{13}.