Evaluate
2\left(x+2\right)
Expand
2x+4
Graph
Quiz
Polynomial
( \frac { 3 x } { x - 1 } - \frac { x } { x + 1 } ) \div \frac { x } { x ^ { 2 } - 1 }
Share
Copied to clipboard
\frac{\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{3x}{x-1} times \frac{x+1}{x+1}. Multiply \frac{x}{x+1} times \frac{x-1}{x-1}.
\frac{\frac{3x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Since \frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x^{2}+3x-x^{2}+x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Do the multiplications in 3x\left(x+1\right)-x\left(x-1\right).
\frac{\frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Combine like terms in 3x^{2}+3x-x^{2}+x.
\frac{\left(2x^{2}+4x\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
Divide \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} by \frac{x}{x^{2}-1} by multiplying \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{x}{x^{2}-1}.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
2\left(x+2\right)
Cancel out x\left(x-1\right)\left(x+1\right) in both numerator and denominator.
2x+4
Expand the expression.
\frac{\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{3x}{x-1} times \frac{x+1}{x+1}. Multiply \frac{x}{x+1} times \frac{x-1}{x-1}.
\frac{\frac{3x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Since \frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x^{2}+3x-x^{2}+x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Do the multiplications in 3x\left(x+1\right)-x\left(x-1\right).
\frac{\frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Combine like terms in 3x^{2}+3x-x^{2}+x.
\frac{\left(2x^{2}+4x\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
Divide \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} by \frac{x}{x^{2}-1} by multiplying \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{x}{x^{2}-1}.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
2\left(x+2\right)
Cancel out x\left(x-1\right)\left(x+1\right) in both numerator and denominator.
2x+4
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}