Evaluate
\frac{81x^{5}y^{30}}{125}
Expand
\frac{81x^{5}y^{30}}{125}
Share
Copied to clipboard
\left(3y^{0}x^{5}\right)^{4}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
3^{4}\left(y^{0}\right)^{4}\left(x^{5}\right)^{4}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Expand \left(3y^{0}x^{5}\right)^{4}.
3^{4}y^{0}\left(x^{5}\right)^{4}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 0 and 4 to get 0.
3^{4}y^{0}x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
81y^{0}x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Calculate 3 to the power of 4 and get 81.
81\times 1x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Calculate y to the power of 0 and get 1.
81x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Multiply 81 and 1 to get 81.
81x^{20}\times \left(\frac{x^{-4}y^{10}}{5x}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
81x^{20}\times \left(\frac{y^{10}}{5x^{5}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
81x^{20}\times \frac{\left(y^{10}\right)^{3}}{\left(5x^{5}\right)^{3}}
To raise \frac{y^{10}}{5x^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(y^{10}\right)^{3}}{\left(5x^{5}\right)^{3}}x^{20}
Express 81\times \frac{\left(y^{10}\right)^{3}}{\left(5x^{5}\right)^{3}} as a single fraction.
\frac{81y^{30}}{\left(5x^{5}\right)^{3}}x^{20}
To raise a power to another power, multiply the exponents. Multiply 10 and 3 to get 30.
\frac{81y^{30}}{5^{3}\left(x^{5}\right)^{3}}x^{20}
Expand \left(5x^{5}\right)^{3}.
\frac{81y^{30}}{5^{3}x^{15}}x^{20}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{81y^{30}}{125x^{15}}x^{20}
Calculate 5 to the power of 3 and get 125.
\frac{81y^{30}x^{20}}{125x^{15}}
Express \frac{81y^{30}}{125x^{15}}x^{20} as a single fraction.
\frac{81x^{5}y^{30}}{125}
Cancel out x^{15} in both numerator and denominator.
\left(3y^{0}x^{5}\right)^{4}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
3^{4}\left(y^{0}\right)^{4}\left(x^{5}\right)^{4}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Expand \left(3y^{0}x^{5}\right)^{4}.
3^{4}y^{0}\left(x^{5}\right)^{4}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 0 and 4 to get 0.
3^{4}y^{0}x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
81y^{0}x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Calculate 3 to the power of 4 and get 81.
81\times 1x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Calculate y to the power of 0 and get 1.
81x^{20}\times \left(\frac{y^{2}x^{-4}}{5xy^{-8}}\right)^{3}
Multiply 81 and 1 to get 81.
81x^{20}\times \left(\frac{x^{-4}y^{10}}{5x}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
81x^{20}\times \left(\frac{y^{10}}{5x^{5}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
81x^{20}\times \frac{\left(y^{10}\right)^{3}}{\left(5x^{5}\right)^{3}}
To raise \frac{y^{10}}{5x^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(y^{10}\right)^{3}}{\left(5x^{5}\right)^{3}}x^{20}
Express 81\times \frac{\left(y^{10}\right)^{3}}{\left(5x^{5}\right)^{3}} as a single fraction.
\frac{81y^{30}}{\left(5x^{5}\right)^{3}}x^{20}
To raise a power to another power, multiply the exponents. Multiply 10 and 3 to get 30.
\frac{81y^{30}}{5^{3}\left(x^{5}\right)^{3}}x^{20}
Expand \left(5x^{5}\right)^{3}.
\frac{81y^{30}}{5^{3}x^{15}}x^{20}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{81y^{30}}{125x^{15}}x^{20}
Calculate 5 to the power of 3 and get 125.
\frac{81y^{30}x^{20}}{125x^{15}}
Express \frac{81y^{30}}{125x^{15}}x^{20} as a single fraction.
\frac{81x^{5}y^{30}}{125}
Cancel out x^{15} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}