Evaluate
\frac{27m^{15}}{125n^{3}}
Expand
\frac{27m^{15}}{125n^{3}}
Share
Copied to clipboard
\frac{\left(3m^{5}\right)^{3}}{\left(5n\right)^{3}}
To raise \frac{3m^{5}}{5n} to a power, raise both numerator and denominator to the power and then divide.
\frac{3^{3}\left(m^{5}\right)^{3}}{\left(5n\right)^{3}}
Expand \left(3m^{5}\right)^{3}.
\frac{3^{3}m^{15}}{\left(5n\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{27m^{15}}{\left(5n\right)^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{27m^{15}}{5^{3}n^{3}}
Expand \left(5n\right)^{3}.
\frac{27m^{15}}{125n^{3}}
Calculate 5 to the power of 3 and get 125.
\frac{\left(3m^{5}\right)^{3}}{\left(5n\right)^{3}}
To raise \frac{3m^{5}}{5n} to a power, raise both numerator and denominator to the power and then divide.
\frac{3^{3}\left(m^{5}\right)^{3}}{\left(5n\right)^{3}}
Expand \left(3m^{5}\right)^{3}.
\frac{3^{3}m^{15}}{\left(5n\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{27m^{15}}{\left(5n\right)^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{27m^{15}}{5^{3}n^{3}}
Expand \left(5n\right)^{3}.
\frac{27m^{15}}{125n^{3}}
Calculate 5 to the power of 3 and get 125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}