Evaluate
\frac{3a+b^{2}+b}{3\left(3a+b\right)}
Expand
\frac{3a+b^{2}+b}{3\left(3a+b\right)}
Share
Copied to clipboard
\frac{\frac{3a-3ab+b-b^{3}}{64a^{2}}\times \frac{8a\left(b+1\right)}{\left(b-1\right)\left(-b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Factor the expressions that are not already factored in \frac{8ab+8a}{1-b^{2}}.
\frac{\frac{3a-3ab+b-b^{3}}{64a^{2}}\times \frac{-8a\left(-b-1\right)}{\left(b-1\right)\left(-b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Extract the negative sign in 1+b.
\frac{\frac{3a-3ab+b-b^{3}}{64a^{2}}\times \frac{-8a}{b-1}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Cancel out -b-1 in both numerator and denominator.
\frac{\frac{\left(3a-3ab+b-b^{3}\right)\left(-8\right)a}{64a^{2}\left(b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Multiply \frac{3a-3ab+b-b^{3}}{64a^{2}} times \frac{-8a}{b-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Cancel out 8a in both numerator and denominator.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{\left(9a+3b\right)\left(b^{2}+6b+9\right)}{4a\left(2b+6\right)\left(2\left(b+1\right)-\left(b-1\right)\right)}}
Divide \frac{9a+3b}{4a\left(2b+6\right)} by \frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9} by multiplying \frac{9a+3b}{4a\left(2b+6\right)} by the reciprocal of \frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{3\left(3a+b\right)\left(b+3\right)^{2}}{2\times 4a\left(b+3\right)^{2}}}
Factor the expressions that are not already factored in \frac{\left(9a+3b\right)\left(b^{2}+6b+9\right)}{4a\left(2b+6\right)\left(2\left(b+1\right)-\left(b-1\right)\right)}.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{3\left(3a+b\right)}{2\times 4a}}
Cancel out \left(b+3\right)^{2} in both numerator and denominator.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{3\left(3a+b\right)}{8a}}
Multiply 2 and 4 to get 8.
\frac{-\left(-3ab+3a-b^{3}+b\right)\times 8a}{8a\left(b-1\right)\times 3\left(3a+b\right)}
Divide \frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)} by \frac{3\left(3a+b\right)}{8a} by multiplying \frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)} by the reciprocal of \frac{3\left(3a+b\right)}{8a}.
\frac{-\left(-3ab+3a-b^{3}+b\right)}{3\left(b-1\right)\left(3a+b\right)}
Cancel out 8a in both numerator and denominator.
\frac{-\left(-b+1\right)\left(3a+b^{2}+b\right)}{3\left(b-1\right)\left(3a+b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(b-1\right)\left(3a+b^{2}+b\right)}{3\left(b-1\right)\left(3a+b\right)}
Extract the negative sign in 1-b.
\frac{-\left(-1\right)\left(3a+b^{2}+b\right)}{3\left(3a+b\right)}
Cancel out b-1 in both numerator and denominator.
\frac{3a+b^{2}+b}{9a+3b}
Expand the expression.
\frac{\frac{3a-3ab+b-b^{3}}{64a^{2}}\times \frac{8a\left(b+1\right)}{\left(b-1\right)\left(-b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Factor the expressions that are not already factored in \frac{8ab+8a}{1-b^{2}}.
\frac{\frac{3a-3ab+b-b^{3}}{64a^{2}}\times \frac{-8a\left(-b-1\right)}{\left(b-1\right)\left(-b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Extract the negative sign in 1+b.
\frac{\frac{3a-3ab+b-b^{3}}{64a^{2}}\times \frac{-8a}{b-1}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Cancel out -b-1 in both numerator and denominator.
\frac{\frac{\left(3a-3ab+b-b^{3}\right)\left(-8\right)a}{64a^{2}\left(b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Multiply \frac{3a-3ab+b-b^{3}}{64a^{2}} times \frac{-8a}{b-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{\frac{9a+3b}{4a\left(2b+6\right)}}{\frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}}}
Cancel out 8a in both numerator and denominator.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{\left(9a+3b\right)\left(b^{2}+6b+9\right)}{4a\left(2b+6\right)\left(2\left(b+1\right)-\left(b-1\right)\right)}}
Divide \frac{9a+3b}{4a\left(2b+6\right)} by \frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9} by multiplying \frac{9a+3b}{4a\left(2b+6\right)} by the reciprocal of \frac{2\left(b+1\right)-\left(b-1\right)}{b^{2}+6b+9}.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{3\left(3a+b\right)\left(b+3\right)^{2}}{2\times 4a\left(b+3\right)^{2}}}
Factor the expressions that are not already factored in \frac{\left(9a+3b\right)\left(b^{2}+6b+9\right)}{4a\left(2b+6\right)\left(2\left(b+1\right)-\left(b-1\right)\right)}.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{3\left(3a+b\right)}{2\times 4a}}
Cancel out \left(b+3\right)^{2} in both numerator and denominator.
\frac{\frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)}}{\frac{3\left(3a+b\right)}{8a}}
Multiply 2 and 4 to get 8.
\frac{-\left(-3ab+3a-b^{3}+b\right)\times 8a}{8a\left(b-1\right)\times 3\left(3a+b\right)}
Divide \frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)} by \frac{3\left(3a+b\right)}{8a} by multiplying \frac{-\left(-3ab+3a-b^{3}+b\right)}{8a\left(b-1\right)} by the reciprocal of \frac{3\left(3a+b\right)}{8a}.
\frac{-\left(-3ab+3a-b^{3}+b\right)}{3\left(b-1\right)\left(3a+b\right)}
Cancel out 8a in both numerator and denominator.
\frac{-\left(-b+1\right)\left(3a+b^{2}+b\right)}{3\left(b-1\right)\left(3a+b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(b-1\right)\left(3a+b^{2}+b\right)}{3\left(b-1\right)\left(3a+b\right)}
Extract the negative sign in 1-b.
\frac{-\left(-1\right)\left(3a+b^{2}+b\right)}{3\left(3a+b\right)}
Cancel out b-1 in both numerator and denominator.
\frac{3a+b^{2}+b}{9a+3b}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}