Evaluate
\frac{-a^{2}+a-6}{2}
Expand
-\frac{a^{2}}{2}+\frac{a}{2}-3
Share
Copied to clipboard
\frac{\frac{3a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{a^{2}\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3a}{a+2} times \frac{a-2}{a-2}. Multiply \frac{a^{2}}{a-2} times \frac{a+2}{a+2}.
\frac{\frac{3a\left(a-2\right)-a^{2}\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
Since \frac{3a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{a^{2}\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}-6a-a^{3}-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
Do the multiplications in 3a\left(a-2\right)-a^{2}\left(a+2\right).
\frac{\frac{a^{2}-6a-a^{3}}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
Combine like terms in 3a^{2}-6a-a^{3}-2a^{2}.
\frac{\left(a^{2}-6a-a^{3}\right)\left(a^{2}-4\right)}{\left(a-2\right)\left(a+2\right)\times 2a}
Divide \frac{a^{2}-6a-a^{3}}{\left(a-2\right)\left(a+2\right)} by \frac{2a}{a^{2}-4} by multiplying \frac{a^{2}-6a-a^{3}}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{2a}{a^{2}-4}.
\frac{a\left(a-2\right)\left(a+2\right)\left(-a^{2}+a-6\right)}{2a\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored.
\frac{-a^{2}+a-6}{2}
Cancel out a\left(a-2\right)\left(a+2\right) in both numerator and denominator.
\frac{\frac{3a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{a^{2}\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3a}{a+2} times \frac{a-2}{a-2}. Multiply \frac{a^{2}}{a-2} times \frac{a+2}{a+2}.
\frac{\frac{3a\left(a-2\right)-a^{2}\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
Since \frac{3a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{a^{2}\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}-6a-a^{3}-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
Do the multiplications in 3a\left(a-2\right)-a^{2}\left(a+2\right).
\frac{\frac{a^{2}-6a-a^{3}}{\left(a-2\right)\left(a+2\right)}}{\frac{2a}{a^{2}-4}}
Combine like terms in 3a^{2}-6a-a^{3}-2a^{2}.
\frac{\left(a^{2}-6a-a^{3}\right)\left(a^{2}-4\right)}{\left(a-2\right)\left(a+2\right)\times 2a}
Divide \frac{a^{2}-6a-a^{3}}{\left(a-2\right)\left(a+2\right)} by \frac{2a}{a^{2}-4} by multiplying \frac{a^{2}-6a-a^{3}}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{2a}{a^{2}-4}.
\frac{a\left(a-2\right)\left(a+2\right)\left(-a^{2}+a-6\right)}{2a\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored.
\frac{-a^{2}+a-6}{2}
Cancel out a\left(a-2\right)\left(a+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}