Evaluate
-\frac{\left(3a-1\right)\left(15a+1\right)}{2\left(3a+1\right)\left(3a+5\right)}
Expand
-\frac{45a^{2}-12a-1}{2\left(3a+1\right)\left(3a+5\right)}
Share
Copied to clipboard
\frac{\frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}-\frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-3a and 3a+1 is \left(-3a+1\right)\left(3a+1\right). Multiply \frac{3a}{1-3a} times \frac{3a+1}{3a+1}. Multiply \frac{2a}{3a+1} times \frac{-3a+1}{-3a+1}.
\frac{\frac{3a\left(3a+1\right)-2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Since \frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} and \frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9a^{2}+3a+6a^{2}-2a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Do the multiplications in 3a\left(3a+1\right)-2a\left(-3a+1\right).
\frac{\frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Combine like terms in 9a^{2}+3a+6a^{2}-2a.
\frac{\left(15a^{2}+a\right)\left(1-6a+9a^{2}\right)}{\left(-3a+1\right)\left(3a+1\right)\left(6a^{2}+10a\right)}
Divide \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by \frac{6a^{2}+10a}{1-6a+9a^{2}} by multiplying \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by the reciprocal of \frac{6a^{2}+10a}{1-6a+9a^{2}}.
\frac{a\left(15a+1\right)\left(3a-1\right)^{2}}{2a\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Cancel out a in both numerator and denominator.
\frac{135a^{3}-81a^{2}+9a+1}{-54a^{3}-90a^{2}+6a+10}
Expand the expression.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a-1\right)\left(3a-1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(3a-1\right)\left(15a+1\right)}{2\left(-3a-1\right)\left(3a+5\right)}
Cancel out 3a-1 in both numerator and denominator.
\frac{45a^{2}-12a-1}{-18a^{2}-36a-10}
Expand the expression.
\frac{\frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}-\frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-3a and 3a+1 is \left(-3a+1\right)\left(3a+1\right). Multiply \frac{3a}{1-3a} times \frac{3a+1}{3a+1}. Multiply \frac{2a}{3a+1} times \frac{-3a+1}{-3a+1}.
\frac{\frac{3a\left(3a+1\right)-2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Since \frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} and \frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9a^{2}+3a+6a^{2}-2a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Do the multiplications in 3a\left(3a+1\right)-2a\left(-3a+1\right).
\frac{\frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Combine like terms in 9a^{2}+3a+6a^{2}-2a.
\frac{\left(15a^{2}+a\right)\left(1-6a+9a^{2}\right)}{\left(-3a+1\right)\left(3a+1\right)\left(6a^{2}+10a\right)}
Divide \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by \frac{6a^{2}+10a}{1-6a+9a^{2}} by multiplying \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by the reciprocal of \frac{6a^{2}+10a}{1-6a+9a^{2}}.
\frac{a\left(15a+1\right)\left(3a-1\right)^{2}}{2a\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Cancel out a in both numerator and denominator.
\frac{135a^{3}-81a^{2}+9a+1}{-54a^{3}-90a^{2}+6a+10}
Expand the expression.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a-1\right)\left(3a-1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(3a-1\right)\left(15a+1\right)}{2\left(-3a-1\right)\left(3a+5\right)}
Cancel out 3a-1 in both numerator and denominator.
\frac{45a^{2}-12a-1}{-18a^{2}-36a-10}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}