Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}-\frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-3a and 3a+1 is \left(-3a+1\right)\left(3a+1\right). Multiply \frac{3a}{1-3a} times \frac{3a+1}{3a+1}. Multiply \frac{2a}{3a+1} times \frac{-3a+1}{-3a+1}.
\frac{\frac{3a\left(3a+1\right)-2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Since \frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} and \frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9a^{2}+3a+6a^{2}-2a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Do the multiplications in 3a\left(3a+1\right)-2a\left(-3a+1\right).
\frac{\frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Combine like terms in 9a^{2}+3a+6a^{2}-2a.
\frac{\left(15a^{2}+a\right)\left(1-6a+9a^{2}\right)}{\left(-3a+1\right)\left(3a+1\right)\left(6a^{2}+10a\right)}
Divide \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by \frac{6a^{2}+10a}{1-6a+9a^{2}} by multiplying \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by the reciprocal of \frac{6a^{2}+10a}{1-6a+9a^{2}}.
\frac{a\left(15a+1\right)\left(3a-1\right)^{2}}{2a\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Cancel out a in both numerator and denominator.
\frac{135a^{3}-81a^{2}+9a+1}{-54a^{3}-90a^{2}+6a+10}
Expand the expression.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a-1\right)\left(3a-1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(3a-1\right)\left(15a+1\right)}{2\left(-3a-1\right)\left(3a+5\right)}
Cancel out 3a-1 in both numerator and denominator.
\frac{45a^{2}-12a-1}{-18a^{2}-36a-10}
Expand the expression.
\frac{\frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}-\frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-3a and 3a+1 is \left(-3a+1\right)\left(3a+1\right). Multiply \frac{3a}{1-3a} times \frac{3a+1}{3a+1}. Multiply \frac{2a}{3a+1} times \frac{-3a+1}{-3a+1}.
\frac{\frac{3a\left(3a+1\right)-2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Since \frac{3a\left(3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} and \frac{2a\left(-3a+1\right)}{\left(-3a+1\right)\left(3a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9a^{2}+3a+6a^{2}-2a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Do the multiplications in 3a\left(3a+1\right)-2a\left(-3a+1\right).
\frac{\frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)}}{\frac{6a^{2}+10a}{1-6a+9a^{2}}}
Combine like terms in 9a^{2}+3a+6a^{2}-2a.
\frac{\left(15a^{2}+a\right)\left(1-6a+9a^{2}\right)}{\left(-3a+1\right)\left(3a+1\right)\left(6a^{2}+10a\right)}
Divide \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by \frac{6a^{2}+10a}{1-6a+9a^{2}} by multiplying \frac{15a^{2}+a}{\left(-3a+1\right)\left(3a+1\right)} by the reciprocal of \frac{6a^{2}+10a}{1-6a+9a^{2}}.
\frac{a\left(15a+1\right)\left(3a-1\right)^{2}}{2a\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a+1\right)\left(3a+1\right)\left(3a+5\right)}
Cancel out a in both numerator and denominator.
\frac{135a^{3}-81a^{2}+9a+1}{-54a^{3}-90a^{2}+6a+10}
Expand the expression.
\frac{\left(15a+1\right)\left(3a-1\right)^{2}}{2\left(-3a-1\right)\left(3a-1\right)\left(3a+5\right)}
Factor the expressions that are not already factored.
\frac{\left(3a-1\right)\left(15a+1\right)}{2\left(-3a-1\right)\left(3a+5\right)}
Cancel out 3a-1 in both numerator and denominator.
\frac{45a^{2}-12a-1}{-18a^{2}-36a-10}
Expand the expression.