Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(3-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{2}
Multiply both numerator and denominator of \frac{3-i}{1+i} by the complex conjugate of the denominator, 1-i.
\left(\frac{2-4i}{2}\right)^{2}
Do the multiplications in \frac{\left(3-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\left(1-2i\right)^{2}
Divide 2-4i by 2 to get 1-2i.
-3-4i
Calculate 1-2i to the power of 2 and get -3-4i.
Re(\left(\frac{\left(3-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{2})
Multiply both numerator and denominator of \frac{3-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\left(\frac{2-4i}{2}\right)^{2})
Do the multiplications in \frac{\left(3-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\left(1-2i\right)^{2})
Divide 2-4i by 2 to get 1-2i.
Re(-3-4i)
Calculate 1-2i to the power of 2 and get -3-4i.
-3
The real part of -3-4i is -3.