Evaluate
\frac{49}{2}=24.5
Factor
\frac{7 ^ {2}}{2} = 24\frac{1}{2} = 24.5
Share
Copied to clipboard
\left(\frac{3-3}{\sqrt{2}}+\frac{4+\sqrt{9}}{\sqrt{2}}\right)^{2}
Calculate the square root of 9 and get 3.
\left(\frac{0}{\sqrt{2}}+\frac{4+\sqrt{9}}{\sqrt{2}}\right)^{2}
Subtract 3 from 3 to get 0.
\left(0+\frac{4+\sqrt{9}}{\sqrt{2}}\right)^{2}
Zero divided by any non-zero term gives zero.
\left(0+\frac{4+3}{\sqrt{2}}\right)^{2}
Calculate the square root of 9 and get 3.
\left(0+\frac{7}{\sqrt{2}}\right)^{2}
Add 4 and 3 to get 7.
\left(0+\frac{7\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{7}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(0+\frac{7\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(\frac{7\sqrt{2}}{2}\right)^{2}
Anything plus zero gives itself.
\frac{\left(7\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{7\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{7^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Expand \left(7\sqrt{2}\right)^{2}.
\frac{49\left(\sqrt{2}\right)^{2}}{2^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{49\times 2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{98}{2^{2}}
Multiply 49 and 2 to get 98.
\frac{98}{4}
Calculate 2 to the power of 2 and get 4.
\frac{49}{2}
Reduce the fraction \frac{98}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}