Evaluate
\frac{3\left(x^{3}+6\right)}{x\left(x-6\right)}
Expand
\frac{3\left(x^{3}+6\right)}{x\left(x-6\right)}
Graph
Share
Copied to clipboard
\frac{\frac{3\times 2}{2x^{2}}+\frac{xx^{2}}{2x^{2}}}{\frac{1}{6}-\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and 2 is 2x^{2}. Multiply \frac{3}{x^{2}} times \frac{2}{2}. Multiply \frac{x}{2} times \frac{x^{2}}{x^{2}}.
\frac{\frac{3\times 2+xx^{2}}{2x^{2}}}{\frac{1}{6}-\frac{1}{x}}
Since \frac{3\times 2}{2x^{2}} and \frac{xx^{2}}{2x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{6+x^{3}}{2x^{2}}}{\frac{1}{6}-\frac{1}{x}}
Do the multiplications in 3\times 2+xx^{2}.
\frac{\frac{6+x^{3}}{2x^{2}}}{\frac{x}{6x}-\frac{6}{6x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and x is 6x. Multiply \frac{1}{6} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{6}{6}.
\frac{\frac{6+x^{3}}{2x^{2}}}{\frac{x-6}{6x}}
Since \frac{x}{6x} and \frac{6}{6x} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(6+x^{3}\right)\times 6x}{2x^{2}\left(x-6\right)}
Divide \frac{6+x^{3}}{2x^{2}} by \frac{x-6}{6x} by multiplying \frac{6+x^{3}}{2x^{2}} by the reciprocal of \frac{x-6}{6x}.
\frac{3\left(x^{3}+6\right)}{x\left(x-6\right)}
Cancel out 2x in both numerator and denominator.
\frac{3x^{3}+18}{x\left(x-6\right)}
Use the distributive property to multiply 3 by x^{3}+6.
\frac{3x^{3}+18}{x^{2}-6x}
Use the distributive property to multiply x by x-6.
\frac{\frac{3\times 2}{2x^{2}}+\frac{xx^{2}}{2x^{2}}}{\frac{1}{6}-\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and 2 is 2x^{2}. Multiply \frac{3}{x^{2}} times \frac{2}{2}. Multiply \frac{x}{2} times \frac{x^{2}}{x^{2}}.
\frac{\frac{3\times 2+xx^{2}}{2x^{2}}}{\frac{1}{6}-\frac{1}{x}}
Since \frac{3\times 2}{2x^{2}} and \frac{xx^{2}}{2x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{6+x^{3}}{2x^{2}}}{\frac{1}{6}-\frac{1}{x}}
Do the multiplications in 3\times 2+xx^{2}.
\frac{\frac{6+x^{3}}{2x^{2}}}{\frac{x}{6x}-\frac{6}{6x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and x is 6x. Multiply \frac{1}{6} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{6}{6}.
\frac{\frac{6+x^{3}}{2x^{2}}}{\frac{x-6}{6x}}
Since \frac{x}{6x} and \frac{6}{6x} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(6+x^{3}\right)\times 6x}{2x^{2}\left(x-6\right)}
Divide \frac{6+x^{3}}{2x^{2}} by \frac{x-6}{6x} by multiplying \frac{6+x^{3}}{2x^{2}} by the reciprocal of \frac{x-6}{6x}.
\frac{3\left(x^{3}+6\right)}{x\left(x-6\right)}
Cancel out 2x in both numerator and denominator.
\frac{3x^{3}+18}{x\left(x-6\right)}
Use the distributive property to multiply 3 by x^{3}+6.
\frac{3x^{3}+18}{x^{2}-6x}
Use the distributive property to multiply x by x-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}