Evaluate
\frac{11}{8}=1.375
Factor
\frac{11}{2 ^ {3}} = 1\frac{3}{8} = 1.375
Share
Copied to clipboard
\left(\frac{1}{29}-\frac{1}{5}\right)\times \frac{5}{8}-\frac{3}{87}\left(\frac{5}{8}-\frac{87}{2}\right)
Reduce the fraction \frac{3}{87} to lowest terms by extracting and canceling out 3.
\left(\frac{5}{145}-\frac{29}{145}\right)\times \frac{5}{8}-\frac{3}{87}\left(\frac{5}{8}-\frac{87}{2}\right)
Least common multiple of 29 and 5 is 145. Convert \frac{1}{29} and \frac{1}{5} to fractions with denominator 145.
\frac{5-29}{145}\times \frac{5}{8}-\frac{3}{87}\left(\frac{5}{8}-\frac{87}{2}\right)
Since \frac{5}{145} and \frac{29}{145} have the same denominator, subtract them by subtracting their numerators.
-\frac{24}{145}\times \frac{5}{8}-\frac{3}{87}\left(\frac{5}{8}-\frac{87}{2}\right)
Subtract 29 from 5 to get -24.
\frac{-24\times 5}{145\times 8}-\frac{3}{87}\left(\frac{5}{8}-\frac{87}{2}\right)
Multiply -\frac{24}{145} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-120}{1160}-\frac{3}{87}\left(\frac{5}{8}-\frac{87}{2}\right)
Do the multiplications in the fraction \frac{-24\times 5}{145\times 8}.
-\frac{3}{29}-\frac{3}{87}\left(\frac{5}{8}-\frac{87}{2}\right)
Reduce the fraction \frac{-120}{1160} to lowest terms by extracting and canceling out 40.
-\frac{3}{29}-\frac{1}{29}\left(\frac{5}{8}-\frac{87}{2}\right)
Reduce the fraction \frac{3}{87} to lowest terms by extracting and canceling out 3.
-\frac{3}{29}-\frac{1}{29}\left(\frac{5}{8}-\frac{348}{8}\right)
Least common multiple of 8 and 2 is 8. Convert \frac{5}{8} and \frac{87}{2} to fractions with denominator 8.
-\frac{3}{29}-\frac{1}{29}\times \frac{5-348}{8}
Since \frac{5}{8} and \frac{348}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{29}-\frac{1}{29}\left(-\frac{343}{8}\right)
Subtract 348 from 5 to get -343.
-\frac{3}{29}-\frac{1\left(-343\right)}{29\times 8}
Multiply \frac{1}{29} times -\frac{343}{8} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{29}-\frac{-343}{232}
Do the multiplications in the fraction \frac{1\left(-343\right)}{29\times 8}.
-\frac{3}{29}-\left(-\frac{343}{232}\right)
Fraction \frac{-343}{232} can be rewritten as -\frac{343}{232} by extracting the negative sign.
-\frac{3}{29}+\frac{343}{232}
The opposite of -\frac{343}{232} is \frac{343}{232}.
-\frac{24}{232}+\frac{343}{232}
Least common multiple of 29 and 232 is 232. Convert -\frac{3}{29} and \frac{343}{232} to fractions with denominator 232.
\frac{-24+343}{232}
Since -\frac{24}{232} and \frac{343}{232} have the same denominator, add them by adding their numerators.
\frac{319}{232}
Add -24 and 343 to get 319.
\frac{11}{8}
Reduce the fraction \frac{319}{232} to lowest terms by extracting and canceling out 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}