Evaluate
\frac{111}{20}=5.55
Factor
\frac{3 \cdot 37}{2 ^ {2} \cdot 5} = 5\frac{11}{20} = 5.55
Quiz
Arithmetic
5 problems similar to:
( \frac { 3 } { 8 } \div 4 + 4 \frac { 1 } { 5 } \div 7 ) \times 8
Share
Copied to clipboard
\left(\frac{3}{8\times 4}+\frac{\frac{4\times 5+1}{5}}{7}\right)\times 8
Express \frac{\frac{3}{8}}{4} as a single fraction.
\left(\frac{3}{32}+\frac{\frac{4\times 5+1}{5}}{7}\right)\times 8
Multiply 8 and 4 to get 32.
\left(\frac{3}{32}+\frac{4\times 5+1}{5\times 7}\right)\times 8
Express \frac{\frac{4\times 5+1}{5}}{7} as a single fraction.
\left(\frac{3}{32}+\frac{20+1}{5\times 7}\right)\times 8
Multiply 4 and 5 to get 20.
\left(\frac{3}{32}+\frac{21}{5\times 7}\right)\times 8
Add 20 and 1 to get 21.
\left(\frac{3}{32}+\frac{21}{35}\right)\times 8
Multiply 5 and 7 to get 35.
\left(\frac{3}{32}+\frac{3}{5}\right)\times 8
Reduce the fraction \frac{21}{35} to lowest terms by extracting and canceling out 7.
\left(\frac{15}{160}+\frac{96}{160}\right)\times 8
Least common multiple of 32 and 5 is 160. Convert \frac{3}{32} and \frac{3}{5} to fractions with denominator 160.
\frac{15+96}{160}\times 8
Since \frac{15}{160} and \frac{96}{160} have the same denominator, add them by adding their numerators.
\frac{111}{160}\times 8
Add 15 and 96 to get 111.
\frac{111\times 8}{160}
Express \frac{111}{160}\times 8 as a single fraction.
\frac{888}{160}
Multiply 111 and 8 to get 888.
\frac{111}{20}
Reduce the fraction \frac{888}{160} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}