Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Share

\frac{\frac{3}{7}x\left(-\frac{5}{9}\right)}{-\frac{5}{12}\times \frac{12}{49}}
Fraction \frac{-5}{9} can be rewritten as -\frac{5}{9} by extracting the negative sign.
\frac{\frac{3\left(-5\right)}{7\times 9}x}{-\frac{5}{12}\times \frac{12}{49}}
Multiply \frac{3}{7} times -\frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-15}{63}x}{-\frac{5}{12}\times \frac{12}{49}}
Do the multiplications in the fraction \frac{3\left(-5\right)}{7\times 9}.
\frac{-\frac{5}{21}x}{-\frac{5}{12}\times \frac{12}{49}}
Reduce the fraction \frac{-15}{63} to lowest terms by extracting and canceling out 3.
\frac{-\frac{5}{21}x}{\frac{-5\times 12}{12\times 49}}
Multiply -\frac{5}{12} times \frac{12}{49} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{5}{21}x}{\frac{-5}{49}}
Cancel out 12 in both numerator and denominator.
\frac{-\frac{5}{21}x}{-\frac{5}{49}}
Fraction \frac{-5}{49} can be rewritten as -\frac{5}{49} by extracting the negative sign.
\frac{-\frac{5}{21}x\times 49}{-5}
Divide -\frac{5}{21}x by -\frac{5}{49} by multiplying -\frac{5}{21}x by the reciprocal of -\frac{5}{49}.
\frac{\frac{-5\times 49}{21}x}{-5}
Express -\frac{5}{21}\times 49 as a single fraction.
\frac{\frac{-245}{21}x}{-5}
Multiply -5 and 49 to get -245.
\frac{-\frac{35}{3}x}{-5}
Reduce the fraction \frac{-245}{21} to lowest terms by extracting and canceling out 7.
\frac{7}{3}x
Divide -\frac{35}{3}x by -5 to get \frac{7}{3}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{3}{7}x\left(-\frac{5}{9}\right)}{-\frac{5}{12}\times \frac{12}{49}})
Fraction \frac{-5}{9} can be rewritten as -\frac{5}{9} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{3\left(-5\right)}{7\times 9}x}{-\frac{5}{12}\times \frac{12}{49}})
Multiply \frac{3}{7} times -\frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{-15}{63}x}{-\frac{5}{12}\times \frac{12}{49}})
Do the multiplications in the fraction \frac{3\left(-5\right)}{7\times 9}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{5}{21}x}{-\frac{5}{12}\times \frac{12}{49}})
Reduce the fraction \frac{-15}{63} to lowest terms by extracting and canceling out 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{5}{21}x}{\frac{-5\times 12}{12\times 49}})
Multiply -\frac{5}{12} times \frac{12}{49} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{5}{21}x}{\frac{-5}{49}})
Cancel out 12 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{5}{21}x}{-\frac{5}{49}})
Fraction \frac{-5}{49} can be rewritten as -\frac{5}{49} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{5}{21}x\times 49}{-5})
Divide -\frac{5}{21}x by -\frac{5}{49} by multiplying -\frac{5}{21}x by the reciprocal of -\frac{5}{49}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{-5\times 49}{21}x}{-5})
Express -\frac{5}{21}\times 49 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{-245}{21}x}{-5})
Multiply -5 and 49 to get -245.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{35}{3}x}{-5})
Reduce the fraction \frac{-245}{21} to lowest terms by extracting and canceling out 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{3}x)
Divide -\frac{35}{3}x by -5 to get \frac{7}{3}x.
\frac{7}{3}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{7}{3}x^{0}
Subtract 1 from 1.
\frac{7}{3}\times 1
For any term t except 0, t^{0}=1.
\frac{7}{3}
For any term t, t\times 1=t and 1t=t.