Evaluate
\frac{m^{2}}{2}+\frac{7m}{24}-\frac{1}{2}
Expand
\frac{m^{2}}{2}+\frac{7m}{24}-\frac{1}{2}
Share
Copied to clipboard
\frac{3}{4}m\times \frac{2}{3}m+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Apply the distributive property by multiplying each term of \frac{3}{4}m+1 by each term of \frac{2}{3}m-\frac{1}{2}.
\frac{3}{4}m^{2}\times \frac{2}{3}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply m and m to get m^{2}.
\frac{3\times 2}{4\times 3}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{4}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Cancel out 3 in both numerator and denominator.
\frac{1}{2}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}m^{2}+\frac{3\left(-1\right)}{4\times 2}m+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}m^{2}+\frac{-3}{8}m+\frac{2}{3}m-\frac{1}{2}
Do the multiplications in the fraction \frac{3\left(-1\right)}{4\times 2}.
\frac{1}{2}m^{2}-\frac{3}{8}m+\frac{2}{3}m-\frac{1}{2}
Fraction \frac{-3}{8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
\frac{1}{2}m^{2}+\frac{7}{24}m-\frac{1}{2}
Combine -\frac{3}{8}m and \frac{2}{3}m to get \frac{7}{24}m.
\frac{3}{4}m\times \frac{2}{3}m+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Apply the distributive property by multiplying each term of \frac{3}{4}m+1 by each term of \frac{2}{3}m-\frac{1}{2}.
\frac{3}{4}m^{2}\times \frac{2}{3}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply m and m to get m^{2}.
\frac{3\times 2}{4\times 3}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{4}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Cancel out 3 in both numerator and denominator.
\frac{1}{2}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}m^{2}+\frac{3\left(-1\right)}{4\times 2}m+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}m^{2}+\frac{-3}{8}m+\frac{2}{3}m-\frac{1}{2}
Do the multiplications in the fraction \frac{3\left(-1\right)}{4\times 2}.
\frac{1}{2}m^{2}-\frac{3}{8}m+\frac{2}{3}m-\frac{1}{2}
Fraction \frac{-3}{8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
\frac{1}{2}m^{2}+\frac{7}{24}m-\frac{1}{2}
Combine -\frac{3}{8}m and \frac{2}{3}m to get \frac{7}{24}m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}