Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{4}m\times \frac{2}{3}m+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Apply the distributive property by multiplying each term of \frac{3}{4}m+1 by each term of \frac{2}{3}m-\frac{1}{2}.
\frac{3}{4}m^{2}\times \frac{2}{3}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply m and m to get m^{2}.
\frac{3\times 2}{4\times 3}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{4}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Cancel out 3 in both numerator and denominator.
\frac{1}{2}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}m^{2}+\frac{3\left(-1\right)}{4\times 2}m+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}m^{2}+\frac{-3}{8}m+\frac{2}{3}m-\frac{1}{2}
Do the multiplications in the fraction \frac{3\left(-1\right)}{4\times 2}.
\frac{1}{2}m^{2}-\frac{3}{8}m+\frac{2}{3}m-\frac{1}{2}
Fraction \frac{-3}{8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
\frac{1}{2}m^{2}+\frac{7}{24}m-\frac{1}{2}
Combine -\frac{3}{8}m and \frac{2}{3}m to get \frac{7}{24}m.
\frac{3}{4}m\times \frac{2}{3}m+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Apply the distributive property by multiplying each term of \frac{3}{4}m+1 by each term of \frac{2}{3}m-\frac{1}{2}.
\frac{3}{4}m^{2}\times \frac{2}{3}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply m and m to get m^{2}.
\frac{3\times 2}{4\times 3}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{4}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Cancel out 3 in both numerator and denominator.
\frac{1}{2}m^{2}+\frac{3}{4}m\left(-\frac{1}{2}\right)+\frac{2}{3}m-\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}m^{2}+\frac{3\left(-1\right)}{4\times 2}m+\frac{2}{3}m-\frac{1}{2}
Multiply \frac{3}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}m^{2}+\frac{-3}{8}m+\frac{2}{3}m-\frac{1}{2}
Do the multiplications in the fraction \frac{3\left(-1\right)}{4\times 2}.
\frac{1}{2}m^{2}-\frac{3}{8}m+\frac{2}{3}m-\frac{1}{2}
Fraction \frac{-3}{8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
\frac{1}{2}m^{2}+\frac{7}{24}m-\frac{1}{2}
Combine -\frac{3}{8}m and \frac{2}{3}m to get \frac{7}{24}m.