Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{4}ab\right)^{2}-1-\left(-\frac{3}{4}ab\right)^{2}+\left(1+ab\right)\left(1-ab\right)
Consider \left(\frac{3}{4}ab+1\right)\left(\frac{3}{4}ab-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\left(\frac{3}{4}\right)^{2}a^{2}b^{2}-1-\left(-\frac{3}{4}ab\right)^{2}+\left(1+ab\right)\left(1-ab\right)
Expand \left(\frac{3}{4}ab\right)^{2}.
\frac{9}{16}a^{2}b^{2}-1-\left(-\frac{3}{4}ab\right)^{2}+\left(1+ab\right)\left(1-ab\right)
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{9}{16}a^{2}b^{2}-1-\left(-\frac{3}{4}\right)^{2}a^{2}b^{2}+\left(1+ab\right)\left(1-ab\right)
Expand \left(-\frac{3}{4}ab\right)^{2}.
\frac{9}{16}a^{2}b^{2}-1-\frac{9}{16}a^{2}b^{2}+\left(1+ab\right)\left(1-ab\right)
Calculate -\frac{3}{4} to the power of 2 and get \frac{9}{16}.
-1+\left(1+ab\right)\left(1-ab\right)
Combine \frac{9}{16}a^{2}b^{2} and -\frac{9}{16}a^{2}b^{2} to get 0.
-1+1-a^{2}b^{2}
Use the distributive property to multiply 1+ab by 1-ab and combine like terms.
-a^{2}b^{2}
Add -1 and 1 to get 0.
\left(\frac{3}{4}ab\right)^{2}-1-\left(-\frac{3}{4}ab\right)^{2}+\left(1+ab\right)\left(1-ab\right)
Consider \left(\frac{3}{4}ab+1\right)\left(\frac{3}{4}ab-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\left(\frac{3}{4}\right)^{2}a^{2}b^{2}-1-\left(-\frac{3}{4}ab\right)^{2}+\left(1+ab\right)\left(1-ab\right)
Expand \left(\frac{3}{4}ab\right)^{2}.
\frac{9}{16}a^{2}b^{2}-1-\left(-\frac{3}{4}ab\right)^{2}+\left(1+ab\right)\left(1-ab\right)
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{9}{16}a^{2}b^{2}-1-\left(-\frac{3}{4}\right)^{2}a^{2}b^{2}+\left(1+ab\right)\left(1-ab\right)
Expand \left(-\frac{3}{4}ab\right)^{2}.
\frac{9}{16}a^{2}b^{2}-1-\frac{9}{16}a^{2}b^{2}+\left(1+ab\right)\left(1-ab\right)
Calculate -\frac{3}{4} to the power of 2 and get \frac{9}{16}.
-1+\left(1+ab\right)\left(1-ab\right)
Combine \frac{9}{16}a^{2}b^{2} and -\frac{9}{16}a^{2}b^{2} to get 0.
-1+1-a^{2}b^{2}
Use the distributive property to multiply 1+ab by 1-ab and combine like terms.
-a^{2}b^{2}
Add -1 and 1 to get 0.